IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Semiparametric regression analysis with missing response at random

  • Qihua Wang

    (Institute for Fiscal Studies)

  • Oliver Linton


    (Institute for Fiscal Studies and cemmap and Cambridge)

  • Wolfgang Hardle

    (Institute for Fiscal Studies)

We develop inference tools in a semiparametric partially linear regression model with missing response data. A class of estimators is defined that includes as special cases: a semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator. We show that any of our class of estimators is asymptotically normal. The three special estimators have the same asymptotic variance. They achieve the semiparametric efficiency bound in the homoskedastic Gaussian case. We show that the Jackknife method can be used to consistently estimate the asymptotic variance. Our model and estimators are defined with a view to avoid the curse of dimensionality, that severely limits the applicability of existing methods. The empirical likelihood method is developed. It is shown that when missing responses are imputed using the semiparametric regression method the empirical log-likelihood is asymptotically a scaled chi-square variable. An adjusted empirical log-likelihood ratio, which is asymptotically standard chi-square, is obtained. Also, a bootstrap empirical log-likelihood ratio is derived and its distribution is used to approximate that of the imputed empirical log-likelihood ratio. A simulation study is conducted to compare the adjusted and bootstrap empirical likelihood with the normal approximation based method in terms of coverage accuracies and average lengths of confidence intervals. Based on biases and standard errors, a comparison is also made by simulation between the proposed estimators and the related estimators.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP11/03.

in new window

Length: 30 pp.
Date of creation: Apr 2003
Date of revision:
Handle: RePEc:ifs:cemmap:11/03
Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page:

More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Linton, Oliver, 1995. "Second Order Approximation in the Partially Linear Regression Model," Econometrica, Econometric Society, vol. 63(5), pages 1079-1112, September.
  2. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
  3. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, 07.
  4. Qihua Wang, 2002. "Empirical Likelihood-based Inference in Linear Models with Missing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 563-576.
  5. Rice, John, 1986. "Convergence rates for partially splined models," Statistics & Probability Letters, Elsevier, vol. 4(4), pages 203-208, June.
  6. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
  7. repec:att:wimass:9001 is not listed on IDEAS
  8. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-54, July.
  9. Newey, Whitney K & Powell, James L & Walker, James R, 1990. "Semiparametric Estimation of Selection Models: Some Empirical Results," American Economic Review, American Economic Association, vol. 80(2), pages 324-28, May.
  10. Heckman, James J & Ichimura, Hidehiko & Todd, Petra, 1998. "Matching as an Econometric Evaluation Estimator," Review of Economic Studies, Wiley Blackwell, vol. 65(2), pages 261-94, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:11/03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benita Rajania)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.