IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v80y2014icp140-152.html
   My bibliography  Save this article

Robust estimation for survival partially linear single-index models

Author

Listed:
  • Wang, Xiaoguang
  • Shi, Xinyong

Abstract

The partially linear single-index model is an interesting semiparametric model extended by the partially linear model and the single-index model, which supply a good balance between flexibility and parsimony. A robust estimation is proposed to fit the partially linear single-index model in case outliers may occur in the right censored response. This method provides a flexible way for modeling survival data. It is a profile M-estimation version and the estimation procedure involves transforming the censored data into synthetic data at first, then it results in fitting the common partially linear single-index models by a robust loss function. Asymptotic properties for the estimators of the linear and single-index coefficients and the optimal rate of convergence for the estimator of the nonparametric function are established. The finite sample performance of the proposed method is assessed by Monte Carlo simulation studies, and demonstrated by the analyses of PBC data and NCCTG lung cancer data.

Suggested Citation

  • Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
  • Handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:140-152
    DOI: 10.1016/j.csda.2014.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314001996
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Xuewen & Cheng, Tsung-Lin, 2007. "Randomly censored partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1895-1922, November.
    2. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    3. Zou, Yubo & Zhang, Jiajia & Qin, Guoyou, 2011. "A semiparametric accelerated failure time partial linear model and its application to breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1479-1487, March.
    4. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    5. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    6. Leiva, Victor & Barros, Michelli & Paula, Gilberto A. & Galea, Manuel, 2007. "Influence diagnostics in log-Birnbaum-Saunders regression models with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5694-5707, August.
    7. Shang, Shulian & Liu, Mengling & Zeleniuch-Jacquotte, Anne & Clendenen, Tess V. & Krogh, Vittorio & Hallmans, Goran & Lu, Wenbin, 2013. "Partially linear single index Cox regression model in nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 199-212.
    8. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    9. Golubev, Georgi & Härdle, Wolfgang, 2000. "On adaptive estimation in partial linear models," SFB 373 Discussion Papers 2000,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    11. Portnoy S., 2003. "Censored Regression Quantiles," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 1001-1012, January.
    12. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    13. Hampel, Frank & Hennig, Christian & Ronchetti, Elvezio, 2011. "A smoothing principle for the Huber and other location M-estimators," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 324-337, January.
    14. Jiajia Zhang & Andrew B. Lawson, 2011. "Bayesian parametric accelerated failure time spatial model and its application to prostate cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(3), pages 591-603, November.
    15. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    16. Zhezhen Jin & D. Y. Lin & Zhiliang Ying, 2006. "On least-squares regression with censored data," Biometrika, Biometrika Trust, vol. 93(1), pages 147-161, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    2. Yixin Fang & Heng Lian & Hua Liang, 2018. "A generalized partially linear framework for variance functions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1147-1175, October.
    3. Zhou, Ling & Lin, Huazhen & Chen, Kani & Liang, Hua, 2019. "Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models," Journal of Econometrics, Elsevier, vol. 213(2), pages 593-607.
    4. Jung-Yu Cheng & Shinn-Jia Tzeng, 2014. "Quantile regression of right-censored length-biased data using the Buckley–James-type method," Computational Statistics, Springer, vol. 29(6), pages 1571-1592, December.
    5. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    6. Jun Zhang & Zhenghui Feng & Peirong Xu, 2015. "Estimating the conditional single-index error distribution with a partial linear mean regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 61-83, March.
    7. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    8. Yang, Lijian & Park, Byeong U. & Xue, Lan & Hardle, Wolfgang, 2006. "Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1212-1227, September.
    9. De Backer, Mickael & El Ghouch, Anouar & Van Keilegom, Ingrid, 2017. "An Adapted Loss Function for Censored Quantile Regression," LIDAM Discussion Papers ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    11. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    12. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    13. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    14. Xiaoyan Sun & Limin Peng & Yijian Huang & HuiChuan J. Lai, 2016. "Generalizing Quantile Regression for Counting Processes With Applications to Recurrent Events," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 145-156, March.
    15. Marcelo Cajias & Philipp Freudenreich & Anna Freudenreich, 2020. "Exploring the determinants of real estate liquidity from an alternative perspective: censored quantile regression in real estate research," Journal of Business Economics, Springer, vol. 90(7), pages 1057-1086, August.
    16. De Silva, Dakshina G. & Kosmopoulou, Georgia & Lamarche, Carlos, 2017. "Subcontracting and the survival of plants in the road construction industry: A panel quantile regression analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 137(C), pages 113-131.
    17. Zhang, Yuanqing & Sun, Yanqing, 2015. "Estimation of partially specified dynamic spatial panel data models with fixed-effects," Regional Science and Urban Economics, Elsevier, vol. 51(C), pages 37-46.
    18. Lu Li & Ruiting Hao & Xiaorong Yang, 2024. "Data Augmentation Based Quantile Regression Estimation for Censored Partially Linear Additive Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1083-1112, August.
    19. Marcelo M. Taddeo & Pedro A. Morettin, 2023. "Bayesian P-Splines Applied to Semiparametric Models with Errors Following a Scale Mixture of Normals," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1331-1355, August.
    20. Xin Geng & Carlos Martins-Filho & Feng Yao, 2015. "Estimation of a Partially Linear Regression in Triangular Systems," Working Papers 15-46, Department of Economics, West Virginia University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:80:y:2014:i:c:p:140-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.