IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v122y2013icp20-34.html
   My bibliography  Save this article

Quantile regression analysis of case-cohort data

Author

Listed:
  • Zheng, Ming
  • Zhao, Ziqiang
  • Yu, Wen

Abstract

Case-cohort designs provide a cost effective way to conduct epidemiological follow-up studies in which event times are the outcome variables. This paper develops a quantile regression approach to the analysis of case-cohort data. Quantile regression is a highly useful tool to delineate relationships between the outcome variable and covariates. Unbiased functional estimating equations are constructed, resulting in asymptotically unbiased estimators. Efficient algorithms based on minimizing L1-type convex functions are given. Uniform consistency and weak convergence of the resulting estimators are established. Error estimation and confidence intervals are obtained by applying a specially designed resampling procedure for case-cohort data. Simulation studies are conducted to assess the performance of the proposed method. An example is also provided for illustration.

Suggested Citation

  • Zheng, Ming & Zhao, Ziqiang & Yu, Wen, 2013. "Quantile regression analysis of case-cohort data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 20-34.
  • Handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:20-34
    DOI: 10.1016/j.jmva.2013.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1300136X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Wenbin Lu & Anastasios A. Tsiatis, 2006. "Semiparametric transformation models for the case-cohort study," Biometrika, Biometrika Trust, vol. 93(1), pages 207-214, March.
    3. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    4. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    6. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    7. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    8. Kani Chen, 2001. "Generalized case-cohort sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 791-809.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:20-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.