IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Quantile regression analysis of case-cohort data

Listed author(s):
  • Zheng, Ming
  • Zhao, Ziqiang
  • Yu, Wen
Registered author(s):

    Case-cohort designs provide a cost effective way to conduct epidemiological follow-up studies in which event times are the outcome variables. This paper develops a quantile regression approach to the analysis of case-cohort data. Quantile regression is a highly useful tool to delineate relationships between the outcome variable and covariates. Unbiased functional estimating equations are constructed, resulting in asymptotically unbiased estimators. Efficient algorithms based on minimizing L1-type convex functions are given. Uniform consistency and weak convergence of the resulting estimators are established. Error estimation and confidence intervals are obtained by applying a specially designed resampling procedure for case-cohort data. Simulation studies are conducted to assess the performance of the proposed method. An example is also provided for illustration.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 122 (2013)
    Issue (Month): C ()
    Pages: 20-34

    in new window

    Handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:20-34
    DOI: 10.1016/j.jmva.2013.07.004
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Wenbin Lu & Anastasios A. Tsiatis, 2006. "Semiparametric transformation models for the case-cohort study," Biometrika, Biometrika Trust, vol. 93(1), pages 207-214, March.
    3. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    4. Michal Kulich & D.Y. Lin, 2004. "Improving the Efficiency of Relative-Risk Estimation in Case-Cohort Studies," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 832-844, January.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, December.
    6. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    7. Peng, Limin & Huang, Yijian, 2008. "Survival Analysis With Quantile Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 637-649, June.
    8. Kani Chen, 2001. "Generalized case-cohort sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 791-809.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:122:y:2013:i:c:p:20-34. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.