IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v143y2016icp56-70.html
   My bibliography  Save this article

Separation of linear and index covariates in partially linear single-index models

Author

Listed:
  • Lian, Heng
  • Liang, Hua

Abstract

Motivated to automatically partition predictors into a linear part and a nonlinear part in partially linear single-index models (PLSIM), we consider the estimation of a partially linear single-index model where the linear part and the nonlinear part involves the same set of covariates. We use two penalties to identify the nonzero components of the linear and index vectors, which automatically separates covariates into the linear and nonlinear part, and thus solves the difficult problem of model structure identification in PLSIM. We propose an estimation procedure and establish its asymptotic properties, which takes into account constraints that guarantee identifiability of the model. Both simulated and real data are used to illustrate the estimation procedure.

Suggested Citation

  • Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
  • Handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:56-70
    DOI: 10.1016/j.jmva.2015.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002092
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Li, Gaorong & Zhu, Lixing & Xue, Liugen & Feng, Sanying, 2010. "Empirical likelihood inference in partially linear single-index models for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 718-732, March.
    3. Hardle, Wolfgang & LIang, Hua & Gao, Jiti, 2000. "Partially linear models," MPRA Paper 39562, University Library of Munich, Germany, revised 01 Sep 2000.
    4. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    5. Prasad Naik & Chih‐Ling Tsai, 2000. "Partial least squares estimator for single‐index models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 763-771.
    6. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    7. Zhang, Hao Helen & Cheng, Guang & Liu, Yufeng, 2011. "Linear or Nonlinear? Automatic Structure Discovery for Partially Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1099-1112.
    8. Xia, Yingcun, 2008. "A Multiple-Index Model and Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1631-1640.
    9. Golubev, Georgi & Härdle, Wolfgang, 2000. "On adaptive estimation in partial linear models," SFB 373 Discussion Papers 2000,21, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
    11. Wei Lin & K. B. Kulasekera, 2007. "Identifiability of single-index models and additive-index models," Biometrika, Biometrika Trust, vol. 94(2), pages 496-501.
    12. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang, 2021. "Estimation and variable selection for partial linear single-index distortion measurement errors models," Statistical Papers, Springer, vol. 62(2), pages 887-913, April.
    2. Jun Zhang & Junpeng Zhu & Zhenghui Feng, 2019. "Estimation and hypothesis test for single-index multiplicative models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 242-268, March.
    3. Jun Zhang & Xia Cui & Heng Peng, 2020. "Estimation and hypothesis test for partial linear single-index multiplicative models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 699-740, June.
    4. Hyung Park & Eva Petkova & Thaddeus Tarpey & R. Todd Ogden, 2021. "A constrained single‐index regression for estimating interactions between a treatment and covariates," Biometrics, The International Biometric Society, vol. 77(2), pages 506-518, June.
    5. Heng Lian, 2020. "Asymptotics of the Non‐parametric Function for B‐splines‐based Estimation in Partially Linear Models," International Statistical Review, International Statistical Institute, vol. 88(1), pages 142-154, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    2. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    3. Lin, Lu & Zhu, Lixing & Gai, Yujie, 2016. "Inference for biased models: A quasi-instrumental variable approach," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 22-36.
    4. Germán Aneiros & Philippe Vieu, 2015. "Partial linear modelling with multi-functional covariates," Computational Statistics, Springer, vol. 30(3), pages 647-671, September.
    5. Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
    6. Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
    7. Jun Zhang & Zhenghui Feng & Peirong Xu, 2015. "Estimating the conditional single-index error distribution with a partial linear mean regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 61-83, March.
    8. Huang, Zhensheng & Pang, Zhen & Hu, Tao, 2013. "Testing structural change in partially linear single-index models with error-prone linear covariates," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 121-133.
    9. Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
    10. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    11. Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
    12. Dong, Chaohua & Gao, Jiti & Linton, Oliver, 2023. "High dimensional semiparametric moment restriction models," Journal of Econometrics, Elsevier, vol. 232(2), pages 320-345.
    13. Wang, Xiaoguang & Shi, Xinyong, 2014. "Robust estimation for survival partially linear single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 140-152.
    14. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    15. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
    16. Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.
    17. Jun Zhang & Yao Yu & Li-Xing Zhu & Hua Liang, 2013. "Partial linear single index models with distortion measurement errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 237-267, April.
    18. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    19. Hilafu, Haileab & Wu, Wenbo, 2017. "Partial projective resampling method for dimension reduction: With applications to partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 1-14.
    20. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:143:y:2016:i:c:p:56-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.