IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v60y2021i1d10.1007_s00181-020-01977-2.html
   My bibliography  Save this article

Feasible generalized least squares for panel data with cross-sectional and serial correlations

Author

Listed:
  • Jushan Bai

    (Columbia University)

  • Sung Hoon Choi

    (Rutgers University)

  • Yuan Liao

    (Rutgers University)

Abstract

This paper considers generalized least squares (GLS) estimation for linear panel data models. By estimating the large error covariance matrix consistently, the proposed feasible GLS estimator is more efficient than the ordinary least squares in the presence of heteroskedasticity, serial and cross-sectional correlations. The covariance matrix used for the feasible GLS is estimated via the banding and thresholding method. We establish the limiting distribution of the proposed estimator. A Monte Carlo study is considered. The proposed method is applied to an empirical application.

Suggested Citation

  • Jushan Bai & Sung Hoon Choi & Yuan Liao, 2021. "Feasible generalized least squares for panel data with cross-sectional and serial correlations," Empirical Economics, Springer, vol. 60(1), pages 309-326, January.
  • Handle: RePEc:spr:empeco:v:60:y:2021:i:1:d:10.1007_s00181-020-01977-2
    DOI: 10.1007/s00181-020-01977-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-020-01977-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-020-01977-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    6. Peters, H Elizabeth, 1986. "Marriage and Divorce: Informational Constraints and Private Contracting," American Economic Review, American Economic Association, vol. 76(3), pages 437-454, June.
    7. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    8. Alberto Abadie & Susan Athey & Guido Imbens & Jeffrey Wooldridge, 2017. "When Should You Adjust Standard Errors for Clustering?," Papers 1710.02926, arXiv.org, revised Oct 2017.
    9. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    10. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    11. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    12. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    13. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    14. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    15. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    16. Leora Friedberg, 1998. "Did Unilateral Divorce Raise Divorce Rates? Evidence from Panel Data," NBER Working Papers 6398, National Bureau of Economic Research, Inc.
    17. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    18. Justin Wolfers, 2006. "Did Unilateral Divorce Laws Raise Divorce Rates? A Reconciliation and New Results," American Economic Review, American Economic Association, vol. 96(5), pages 1802-1820, December.
    19. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey, 2017. "Double/Debiased/Neyman Machine Learning of Treatment Effects," American Economic Review, American Economic Association, vol. 107(5), pages 261-265, May.
    20. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    22. Allen, Douglas W, 1992. "Marriage and Divorce: Comment," American Economic Review, American Economic Association, vol. 82(3), pages 679-685, June.
    23. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    24. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    25. Jushan Bai & Serena Ng, 2017. "Principal Components and Regularized Estimation of Factor Models," Papers 1708.08137, arXiv.org, revised Nov 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Li & Vasilis Sarafidis & Joakim Westerlund, 2021. "Essays in honor of Professor Badi H Baltagi," Empirical Economics, Springer, vol. 60(1), pages 1-11, January.
    2. Vo, Thang T. & Ha, Truong Thiet, 2021. "Decomposition of gender bias in enterprise employment: Insights from Vietnam," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 182-194.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    2. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
    3. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, Wiley Blackwell, vol. 56(4), pages 1139-1203, September.
    4. Christian A. Vossler, 2013. "Analyzing repeated-game economics experiments: robust standard errors for panel data with serial correlation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 3, pages 89-112, Edward Elgar Publishing.
    5. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.
    6. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    7. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    8. Daniel Hoechle, 2007. "Robust standard errors for panel regressions with cross-sectional dependence," Stata Journal, StataCorp LP, vol. 7(3), pages 281-312, September.
    9. Giray Gozgor, 2012. "Inflation Targeting and Monetary Policy Rules: Further Evidence from the Case of Turkey," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 2(5), pages 1-7.
    10. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    11. Hoechle, Daniel & Schmid, Markus & Zimmermann, Heinz, 2012. "Decomposing Performance," Working Papers on Finance 1216, University of St. Gallen, School of Finance, revised Nov 2015.
    12. Ding, Peng, 2021. "The Frisch–Waugh–Lovell theorem for standard errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    13. González-Val, Rafael & Marcén, Miriam, 2012. "Unilateral divorce versus child custody and child support in the U.S," Journal of Economic Behavior & Organization, Elsevier, vol. 81(2), pages 613-643.
    14. Javier Hidalgo & Marcia M Schafgans, 2017. "Inference Without Smoothing for Large Panels with Cross- Sectional and Temporal Dependence," STICERD - Econometrics Paper Series 597, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    15. Sin, C.Y. (Chor-yiu) & Lee, Cheng-Few, 2021. "Using heteroscedasticity-non-consistent or heteroscedasticity-consistent variances in linear regression," Econometrics and Statistics, Elsevier, vol. 18(C), pages 117-142.
    16. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    17. González-Val, Rafael & Marcén, Miriam, 2012. "Breaks in the breaks: An analysis of divorce rates in Europe," International Review of Law and Economics, Elsevier, vol. 32(2), pages 242-255.
    18. Hidalgo, Javier & Schafgans, Marcia, 2021. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Journal of Econometrics, Elsevier, vol. 223(1), pages 125-160.
    19. Jushan Bai & Sung Hoon Choi & Yuan Liao, 2019. "Standard Errors for Panel Data Models with Unknown Clusters," Papers 1910.07406, arXiv.org, revised May 2020.
    20. Peng Ding, 2020. "The Frisch--Waugh--Lovell Theorem for Standard Errors," Papers 2009.06621, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:60:y:2021:i:1:d:10.1007_s00181-020-01977-2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.