IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/49-16.html
   My bibliography  Save this paper

Double machine learning for treatment and causal parameters

Author

Listed:
  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Denis Chetverikov

    (Institute for Fiscal Studies and UCLA)

  • Mert Demirer

    (Institute for Fiscal Studies)

  • Esther Duflo

    (Institute for Fiscal Studies)

  • Christian Hansen

    (Institute for Fiscal Studies and Chicago GSB)

  • Whitney K. Newey

    (Institute for Fiscal Studies and MIT)

Abstract

Most modern supervised statistical/machine learning (ML) methods are explicitly designed to solve prediction problems very well. Achieving this goal does not imply that these methods automatically deliver good estimators of causal parameters. Examples of such parameters include individual regression coffiecients, average treatment e ffects, average lifts, and demand or supply elasticities. In fact, estimators of such causal parameters obtained via naively plugging ML estimators into estimating equations for such parameters can behave very poorly. For example, the resulting estimators may formally have inferior rates of convergence with respect to the sample size n caused by regularization bias. Fortunately, this regularization bias can be removed by solving auxiliary prediction problems via ML tools. Speci ficially, we can form an efficient score for the target low-dimensional parameter by combining auxiliary and main ML predictions. The efficient score may then be used to build an efficient estimator of the target parameter which typically will converge at the fastest possible 1/v n rate and be approximately unbiased and normal, allowing simple construction of valid con fidence intervals for parameters of interest. The resulting method thus could be called a "double ML" method because it relies on estimating primary and auxiliary predictive models. Such double ML estimators achieve the fastest rates of convergence and exhibit robust good behavior with respect to a broader class of probability distributions than naive "single" ML estimators. In order to avoid overfi tting, following [3], our construction also makes use of the K-fold sample splitting, which we call cross- fitting. The use of sample splitting allows us to use a very broad set of ML predictive methods in solving the auxiliary and main prediction problems, such as random forests, lasso, ridge, deep neural nets, boosted trees, as well as various hybrids and aggregates of these methods (e.g. a hybrid of a random forest and lasso). We illustrate the application of the general theory through application to the leading cases of estimation and inference on the main parameter in a partially linear regression model and estimation and inference on average treatment eff ects and average treatment e ffects on the treated under conditional random assignment of the treatment. These applications cover randomized control trials as a special case. We then use the methods in an empirical application which estimates the e ffect of 401(k) eligibility on accumulated financial assets.

Suggested Citation

  • Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:49/16
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp491616.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. David A. Wise, 1994. "Introduction to "Studies in the Economics of Aging"," NBER Chapters, in: Studies in the Economics of Aging, pages 1-10, National Bureau of Economic Research, Inc.
    3. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    4. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    5. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    6. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    8. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    9. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers 49/14, Institute for Fiscal Studies.
    11. Linton, Oliver, 1996. "Edgeworth Approximation for MINPIN Estimators in Semiparametric Regression Models," Econometric Theory, Cambridge University Press, vol. 12(1), pages 30-60, March.
    12. Leeb, Hannes & P tscher, Benedikt M., 2008. "Guest Editors' Editorial: Recent Developments In Model Selection And Related Areas," Econometric Theory, Cambridge University Press, vol. 24(02), pages 319-322, April.
    13. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Anti-concentration and honest, adaptive confidence bands," CeMMAP working papers CWP69/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    15. A. Belloni & V. Chernozhukov & K. Kato, 2015. "Uniform post-selection inference for least absolute deviation regression and other Z-estimation problems," Biometrika, Biometrika Trust, vol. 102(1), pages 77-94.
    16. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    17. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for high-dimensional sparse econometric models," CeMMAP working papers CWP41/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    20. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    21. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    22. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    23. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    24. David A. Wise, 1994. "Studies in the Economics of Aging," NBER Books, National Bureau of Economic Research, Inc, number wise94-1.
    25. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    26. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    27. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    28. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
    29. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    3. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    5. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    6. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    9. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    10. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    13. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    14. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    15. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    16. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    17. Dennis Kristensen, 2009. "Semiparametric Modelling and Estimation: A Selective Overview," CREATES Research Papers 2009-44, Department of Economics and Business Economics, Aarhus University.
    18. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    19. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    20. Belloni, Alexandre & Chen, Mingli & Chernozhukov, Victor, 2016. "Quantile Graphical Models : Prediction and Conditional Independence with Applications to Financial Risk Management," Economic Research Papers 269321, University of Warwick - Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:49/16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.