Some searches may not work properly. We apologize for the inconvenience.
My bibliography Save this paperUniform post selection inference for LAD regression and other z-estimation problems
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems," Papers 1304.0282, arXiv.org, revised Oct 2020.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers 74/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers 51/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers CWP51/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
References listed on IDEAS
- Joseph P. Romano & Michael Wolf, 2005.
"Stepwise Multiple Testing as Formalized Data Snooping,"
Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
- Joseph P. Romano & Michael Wolf, 2003. "Stepwise multiple testing as formalized data snooping," Economics Working Papers 712, Department of Economics and Business, Universitat Pompeu Fabra.
- Joseph P. Romano & Michael Wolf, 2003. "Stepwise Multiple Testing as Formalized Data Snooping," Working Papers 17, Barcelona School of Economics.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximation of suprema of empirical processes,"
CeMMAP working papers
CWP44/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP41/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2016. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 41/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 44/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers CWP75/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximation of suprema of empirical processes," CeMMAP working papers 75/13, Institute for Fiscal Studies.
- Leeb, Hannes & Potscher, Benedikt M., 2008.
"Sparse estimators and the oracle property, or the return of Hodges' estimator,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
- Hannes Leeb & Benedikt M. Poetscher, 2005. "Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator," Cowles Foundation Discussion Papers 1500, Cowles Foundation for Research in Economics, Yale University, revised Apr 2007.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Robust inference in high-dimensional approximately sparse quantile regression models,"
CeMMAP working papers
CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 70/13, Institute for Fiscal Studies.
- Liang H. & Wang S. & Robins J.M. & Carroll R.J., 2004. "Estimation in Partially Linear Models With Missing Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 357-367, January.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- repec:cup:cbooks:9780521608275 is not listed on IDEAS
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019.
"Conditional quantile processes based on series or many regressors,"
Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val, 2011. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP19/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Ivan Fernandez-Val, 2016. "Conditional quantile processes based on series or many regressors," CeMMAP working papers CWP46/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Ivan Fernandez-Val, 2016. "Conditional quantile processes based on series or many regressors," CeMMAP working papers 46/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Iv'an Fern'andez-Val, 2011. "Conditional Quantile Processes based on Series or Many Regressors," Papers 1105.6154, arXiv.org, revised Aug 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
- Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
- Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
- He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
- repec:cup:cbooks:9780521845731 is not listed on IDEAS
- Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rahul Singh, 2021. "Kernel Ridge Riesz Representers: Generalization, Mis-specification, and the Counterfactual Effective Dimension," Papers 2102.11076, arXiv.org, revised Jul 2024.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017.
"Confidence bands for coefficients in high dimensional linear models with error-in-variables,"
CeMMAP working papers
CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers 22/17, Institute for Fiscal Studies.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Yanqin Fan & Fang Han & Wei Li & Xiao-Hua Zhou, 2019. "On rank estimators in increasing dimensions," Papers 1908.05255, arXiv.org.
- Jiaying Gu & Stanislav Volgushev, 2018. "Panel Data Quantile Regression with Grouped Fixed Effects," Papers 1801.05041, arXiv.org, revised Aug 2018.
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018.
"LASSO-Driven Inference in Time and Space,"
Papers
1806.05081, arXiv.org, revised May 2020.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- S Klaassen & J Kueck & M Spindler & V Chernozhukov, 2023.
"Uniform inference in high-dimensional Gaussian graphical models,"
Biometrika, Biometrika Trust, vol. 110(1), pages 51-68.
- Sven Klaassen & Jannis Kuck & Martin Spindler & Victor Chernozhukov, 2018. "Uniform Inference in High-Dimensional Gaussian Graphical Models," Papers 1808.10532, arXiv.org, revised Dec 2018.
- Sven Klaassen & Jannis Kück & Martin Spindler & Victor Chernozhukov, 2019. "Uniform inference in high-dimensional Gaussian graphical models," CeMMAP working papers CWP29/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Fan, Yanqin & Han, Fang & Li, Wei & Zhou, Xiao-Hua, 2020. "On rank estimators in increasing dimensions," Journal of Econometrics, Elsevier, vol. 214(2), pages 379-412.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013.
"Pivotal estimation via square-root lasso in nonparametric regression,"
CeMMAP working papers
CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers 62/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Papers 1501.03430, arXiv.org, revised Aug 2015.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers 36/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers CWP36/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Doğan, Osman & Taşpınar, Süleyman & Bera, Anil K., 2021. "A Bayesian robust chi-squared test for testing simple hypotheses," Journal of Econometrics, Elsevier, vol. 222(2), pages 933-958.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016.
"Post-Selection Inference for Generalized Linear Models With Many Controls,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Post-Selection Inference for Generalized Linear Models with Many Controls," Papers 1304.3969, arXiv.org, revised Mar 2016.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments,"
American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers 02/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers CWP02/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Chris Hansen & Martin Spindler, 2016. "High-Dimensional Metrics in R," Papers 1603.01700, arXiv.org, revised Aug 2016.
- Victor Chernozhukov & Whitney Newey & Rahul Singh & Vasilis Syrgkanis, 2020. "Adversarial Estimation of Riesz Representers," Papers 2101.00009, arXiv.org, revised Apr 2024.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Sven Klaassen & Jannis Kueck & Martin Spindler, 2017. "Transformation Models in High-Dimensions," Papers 1712.07364, arXiv.org.
- Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
- Chen, Le-Yu & Lee, Sokbae, 2023.
"Sparse quantile regression,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
- Le-Yu Chen & Sokbae (Simon) Lee, 2020. "Sparse Quantile Regression," CeMMAP working papers CWP30/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae Lee, 2020. "Sparse Quantile Regression," Papers 2006.11201, arXiv.org, revised Mar 2023.
- Zhentao Shi & Jingyi Huang, 2019. "Forward-Selected Panel Data Approach for Program Evaluation," Papers 1908.05894, arXiv.org, revised Apr 2021.
- Matthew Backus & Sida Peng, 2019. "On Testing Continuity and the Detection of Failures," NBER Working Papers 26016, National Bureau of Economic Research, Inc.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Uniform post selection inference for LAD regression models,"
CeMMAP working papers
CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers 24/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016.
"Post-Selection Inference for Generalized Linear Models With Many Controls,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Post-Selection Inference for Generalized Linear Models with Many Controls," Papers 1304.3969, arXiv.org, revised Mar 2016.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Robust inference in high-dimensional approximately sparse quantile regression models,"
CeMMAP working papers
70/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016.
"Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk,"
Papers
1607.00286, arXiv.org, revised Oct 2019.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers 54/17, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers CWP54/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023.
"Lasso inference for high-dimensional time series,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments,"
American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers 02/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers CWP02/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Belloni, Alexandre & Chen, Mingli & Chernozhukov, Victor, 2016.
"Quantile Graphical Models : Prediction and Conditional Independence with Applications to Financial Risk Management,"
Economic Research Papers
269321, University of Warwick - Department of Economics.
- Belloni, Alexandre. & Chen, Mingli & Chernozhukov, Victor, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Financial Risk Management," The Warwick Economics Research Paper Series (TWERPS) 1125, University of Warwick, Department of Economics.
- Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020.
"Bias-Aware Inference in Regularized Regression Models,"
Working Papers
2020-2, Princeton University. Economics Department..
- Timothy B. Armstrong & Michal Koles'ar & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Papers 2012.14823, arXiv.org, revised Aug 2023.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Victor Chernozhukov & Wolfgang K. Hardle & Chen Huang & Weining Wang, 2018.
"LASSO-Driven Inference in Time and Space,"
Papers
1806.05081, arXiv.org, revised May 2020.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2019. "LASSO-Driven Inference in Time and Space," CeMMAP working papers CWP20/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Härdle, Wolfgang Karl & Huang, Chen & Wang, Weining, 2018. "LASSO-Driven Inference in Time and Space," IRTG 1792 Discussion Papers 2018-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Chernozhukov, V. & Härdle, W.K. & Huang, C. & Wang, W., 2018. "LASSO-Driven Inference in Time and Space," Working Papers 18/04, Department of Economics, City University London.
- Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018.
"Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence,"
IZA Discussion Papers
12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:74/13. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.