IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/24-13.html
   My bibliography  Save this paper

Uniform post selection inference for LAD regression models

Author

Listed:
  • Alexandre Belloni
  • Victor Chernozhukov
  • Kengo Kato

Abstract

We develop uniformly valid confidence regions for a regression coefficient in a high-dimensional sparse LAD (least absolute deviation or median) regression model. The setting is one where the number of regressors p could be large in comparison to the sample size n, but only s « n of them are needed to accurately describe the regression function. Our new methods are based on the instrumental LAD regression estimator that assembles the optimal estimating equation from either post ℓ- penalised LAD regression or ℓ1- penalised LAD regression. The estimating equation is immunised against non-regular estimation of nuisance part of the regression function, in the sense of Neyman. We establish that in a homoscedastic regression model, under certain conditions, the instrumental LAD regression estimator of the regression coefficient is asymptotically root-n normal uniformly with respect to the underlying sparse model. The resulting confidence regions are valid uniformly with respect to the underlying model. The new inference methods outperform the naive, 'oracle based' inference methods, which are known to be not uniformly valid- with coverage property failing to hold uniformly with respect the underlying model- even in the setting with p = 2. We also provide Monte-Carlo experiments which demonstrate that standard post-selection inference breaks down over large parts of the parameter space, and the proposed method does not.

Suggested Citation

  • Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers 24/13, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:24/13
    DOI: 10.1920/wp.cem.2013.2413
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP2413.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2013.2413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    4. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    5. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    6. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    7. Chernozhukov, Victor & Hansen, Christian, 2008. "Instrumental variable quantile regression: A robust inference approach," Journal of Econometrics, Elsevier, vol. 142(1), pages 379-398, January.
    8. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    9. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    10. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    3. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Victor Chernozhukov & Whitney K. Newey & James Robins, 2018. "Double/de-biased machine learning using regularized Riesz representers," CeMMAP working papers CWP15/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    8. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    9. Victor Chernozhukov & Mert Demirer & Esther Duflo & Iv'an Fern'andez-Val, 2017. "Fisher-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," Papers 1712.04802, arXiv.org, revised Oct 2023.
    10. Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017. "Generic machine learning inference on heterogenous treatment effects in randomized experiments," CeMMAP working papers CWP61/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers 62/13, Institute for Fiscal Studies.
    13. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers 67/13, Institute for Fiscal Studies.
    14. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    15. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022. "Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
    17. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    18. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Supplementary Appendix for "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"," Papers 1305.6099, arXiv.org, revised Jun 2013.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 70/13, Institute for Fiscal Studies.
    3. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    5. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Honest confidence regions for a regression parameter in logistic regression with a large number of controls," CeMMAP working papers CWP67/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    7. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    8. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    9. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    11. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    12. Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023. "Lasso inference for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
    13. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    14. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    15. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    16. Galvao Jr, A. F. & Montes-Rojas, G., 2009. "Instrumental variables quantile regression for panel data with measurement errors," Working Papers 09/06, Department of Economics, City University London.
    17. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    18. repec:hal:wpspec:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    19. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    20. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    21. Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:24/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.