IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/22-17.html
   My bibliography  Save this paper

Confidence bands for coefficients in high dimensional linear models with error-in-variables

Author

Listed:
  • Alexandre Belloni

    (Institute for Fiscal Studies)

  • Victor Chernozhukov

    (Institute for Fiscal Studies and MIT)

  • Abhishek Kaul

    (Institute for Fiscal Studies)

Abstract

We study high-dimensional linear models with error-in-variables. Such models are motivated by various applications in econometrics, finance and genetics. These models are challenging because of the need to account for measurement errors to avoid non-vanishing biases in addition to handle the high dimensionality of the parameters. A recent growing literature has proposed various estimators that achieve good rates of convergence. Our main contribution complements this literature with the construction of simultaneous confidence regions for the parameters of interest in such high-dimensional linear models with error-in-variables. These confidence regions are based on the construction of moment conditions that have an additional orthogonality property with respect to nuisance parameters. We provide a construction that requires us to estimate an auxiliary high-dimensional linear model with error-in-variables for each component of interest. We use a multiplier bootstrap to compute critical values for simultaneous confidence intervals for a target subset of the components. We show its validity despite of possible (moderate) model selection mistakes, and allowing the number of target coefficients to be larger than the sample size. We apply and discuss the implications of our results to two examples and conduct Monte Carlo simulations to illustrate the performance of the proposed procedure for each variable whose coefficient is the target of inference.

Suggested Citation

  • Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul, 2017. "Confidence bands for coefficients in high dimensional linear models with error-in-variables," CeMMAP working papers CWP22/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:22/17
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP221717.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eric Gautier & Alexandre Tsybakov, 2011. "High-Dimensional Instrumental Variables Regression and Confidence Sets," Working Papers 2011-13, Center for Research in Economics and Statistics.
    2. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    3. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    5. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers 49/14, Institute for Fiscal Studies.
    6. Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2016. "Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related Gaussian couplings," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3632-3651.
    7. Leeb, Hannes & P tscher, Benedikt M., 2008. "Guest Editors' Editorial: Recent Developments In Model Selection And Related Areas," Econometric Theory, Cambridge University Press, vol. 24(02), pages 319-322, April.
    8. Kaul, Abhishek & Koul, Hira L., 2015. "Weighted ℓ1-penalized corrected quantile regression for high dimensional measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 72-91.
    9. Alexandre Belloni & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2014. "Linear and Conic Programming Estimators in High-Dimensional Errors-in-variables Models," Working Papers 2014-34, Center for Research in Economics and Statistics.
    10. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    11. Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
    12. Eric Gautier & Alexandre Tsybakov, 2013. "Pivotal estimation in high-dimensional regression via linear programming," Papers 1303.7092, arXiv.org, revised Apr 2013.
    13. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression models," CeMMAP working papers CWP24/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    15. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Li, Mengyan & Li, Runze & Ma, Yanyuan, 2021. "Inference in high dimensional linear measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    3. Galea, Manuel & de Castro, Mário, 2017. "Robust inference in a linear functional model with replications using the t distribution," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 134-145.
    4. Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2017. "Pivotal Estimation Via Self-Normalization for High-Dimensional Linear Models with Errors in Variables," Working Papers 2017-26, Center for Research in Economics and Statistics.
    5. Xiaobo Wang & Jiayu Huang & Guosheng Yin & Jian Huang & Yuanshan Wu, 2023. "Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 115-141, January.
    6. Fan, Jinlin & Zhang, Yaowu & Zhu, Liping, 2022. "Independence tests in the presence of measurement errors: An invariance law," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    4. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    5. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    6. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    7. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    8. Belloni, Alexandre & Hansen, Christian & Newey, Whitney, 2022. "High-dimensional linear models with many endogenous variables," Journal of Econometrics, Elsevier, vol. 228(1), pages 4-26.
    9. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    10. Victor Chernozhukov & Wolfgang Härdle & Chen Huang & Weining Wang, 2018. "LASSO-driven inference in time and space," CeMMAP working papers CWP36/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2022. "Debiased machine learning of global and local parameters using regularized Riesz representers [Semiparametric instrumental variable estimation of treatment response models]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 576-601.
    13. Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
    14. Victor Chernozhukov & Whitney K. Newey & James Robins, 2018. "Double/de-biased machine learning using regularized Riesz representers," CeMMAP working papers CWP15/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Alexandre Belloni & Mathieu Rosenbaum & Alexandre Tsybakov, 2016. "An {l1, l2, l-infinity} Regularization Approach to High-Dimensional Errors-in-variables Models," Working Papers 2016-12, Center for Research in Economics and Statistics.
    16. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    17. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    18. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    19. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    20. Xiaohong Chen & Andres Santos, 2018. "Overidentification in Regular Models," Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.

    More about this item

    Keywords

    honest confidence regions; error-in-variables; high dimensional models;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:22/17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.