IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

High-dimensional instrumental variables regression and confidence sets

  • Eric Gautier

    ()

    (CREST - Centre de Recherche en Économie et Statistique - INSEE - École Nationale de la Statistique et de l'Administration Économique, ENSAE - École Nationale de la Statistique et de l'Administration Économique - ENSAE ParisTech)

  • Alexandre Tsybakov

    ()

    (CREST - Centre de Recherche en Économie et Statistique - INSEE - École Nationale de la Statistique et de l'Administration Économique, ENSAE - École Nationale de la Statistique et de l'Administration Économique - ENSAE ParisTech)

We propose an instrumental variables method for inference in high-dimensional structural equations with endogenous regressors. The number of regressors K can be much larger than the sample size. A key ingredient is sparsity, i.e., the vector of coefficients has many zeros, or approximate sparsity, i.e., it is well approximated by a vector with many zeros. We can have less instruments than regressors and allow for partial identification. Our procedure, called STIV (Self Tuning Instrumental Variables) estimator, is realized as a solution of a conic program. The joint confidence sets can be obtained by solving K convex programs. We provide rates of convergence, model selection results and propose three types of joint confidence sets relying each on different assumptions on the parameter space. Under the stronger assumption they are adaptive. The results are uniform over a wide classes of distributions of the data and can have finite sample validity. When the number of instruments is too large or when one only has instruments for an endogenous regressor which are too weak, the confidence sets can have infinite volume with positive probability. This provides a simple one-stage procedure for inference robust to weak instruments which could also be used for low dimensional models. In our IV regression setting, the standard tools from the literature on sparsity, such as the restricted eigenvalue assumption are inapplicable. Therefore we develop new sharper sensitivity characteristics, as well as easy to compute data-driven bounds. All results apply to the particular case of the usual high-dimensional regression. We also present extensions to the high-dimensional framework of the two-stage least squares method and method to detect endogenous instruments given a set of exogenous instruments.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hal.archives-ouvertes.fr/docs/01/06/14/94/PDF/GTrevision.pdf
Download Restriction: no

Paper provided by HAL in its series Working Papers with number hal-00591732.

as
in new window

Length:
Date of creation: 29 Aug 2014
Date of revision:
Handle: RePEc:hal:wpaper:hal-00591732
Note: View the original document on HAL open archive server: http://hal.archives-ouvertes.fr/hal-00591732
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. A. Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  2. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, 07.
  3. Alastair Hall & Fernanda P. M. Peixe, 2000. "A Consistent Method for the Selection of Relevant Instruments," Econometric Society World Congress 2000 Contributed Papers 0790, Econometric Society.
  4. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
  5. Caner, Mehmet, 2009. "Lasso-Type Gmm Estimator," Econometric Theory, Cambridge University Press, vol. 25(01), pages 270-290, February.
  6. Okui, Ryo, 2011. "Instrumental variable estimation in the presence of many moment conditions," Journal of Econometrics, Elsevier, vol. 165(1), pages 70-86.
  7. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(06), pages 797-834, December.
  8. Amemiya, Takeshi, 1974. "The nonlinear two-stage least-squares estimator," Journal of Econometrics, Elsevier, vol. 2(2), pages 105-110, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00591732. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.