IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Testing many moment inequalities

Listed author(s):
  • Victor Chernozhukov

    ()

    (Institute for Fiscal Studies and MIT)

  • Denis Chetverikov

    ()

    (Institute for Fiscal Studies and UCLA)

  • Kengo Kato

    (Institute for Fiscal Studies)

This paper considers the problem of testing many moment inequalities where the number of moment inequalities, denoted by p, is possibly much larger than the sample size n. There are variety of economic applications where the problem of testing many moment inequalities appears; a notable example is a market structure model of Ciliberto and Tamer (2009) where p = 2m+1 with m being the number of fi rms. We consider the test statistic given by the maximum of p Studentized (or t-type) statistics, and analyze various ways to compute critical values for the test statistic. Speci cally, we consider critical values based upon (i) the union bound combined with a moderate deviation inequality for self-normalized sums, (ii) the multiplier and empirical bootstraps, and (iii) two-step and three-step variants of (i) and (ii) by incorporating selection of uninformative inequalities that are far from being binding and novel selection of weakly informative inequalities that are potentially binding but do not provide fi rst order information. We prove validity of these methods, showing that under mild conditions, they lead to tests with error in size decreasing polynomially in n while allowing for p being much larger than n; indeed p can be of order exp(nc) for some c > 0. Importantly, all these results hold without any restriction on correlation structure between p Studentized statistics, and also hold uniformly with respect to suitably large classes of underlying distributions. Moreover, when p grows with n, we show that all of our tests are (minimax) optimal in the sense that they are uniformly consistent against alternatives whose "distance" from the null is larger than the threshold (2(log p)=n)1/2, while any test can only have trivial power in the worst case when the distance is smaller than the threshold. Finally, we show validity of a test based on block multiplier bootstrap in the case of dependent data under some general mixing conditions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://www.ifs.org.uk/uploads/cemmap/wps/cwp421616.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP42/16.

as
in new window

Length:
Date of creation: 26 Aug 2016
Handle: RePEc:ifs:cemmap:42/16
Contact details of provider: Postal:
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
  2. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(03), pages 669-709, June.
  3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
  4. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, 09.
  5. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
  6. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Comparison and anti-concentration bounds for maxima of Gaussian random vectors," CeMMAP working papers CWP71/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  7. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013. "Testing functional inequalities," Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
  8. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
  9. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
  10. Donald W. K. Andrews, 2004. "the Block-Block Bootstrap: Improved Asymptotic Refinements," Econometrica, Econometric Society, vol. 72(3), pages 673-700, May.
  11. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2014. "Central limit theorems and bootstrap in high dimensions," CeMMAP working papers CWP49/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  12. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
  13. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Anti-concentration and honest, adaptive confidence bands," CeMMAP working papers CWP69/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  14. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
  15. Alfred Galichon & Marc Henry, 2011. "Set Identification in Models with Multiple Equilibria," Review of Economic Studies, Oxford University Press, vol. 78(4), pages 1264-1298.
  16. A. Pakes, 2010. "Alternative Models for Moment Inequalities," Econometrica, Econometric Society, vol. 78(6), pages 1783-1822, November.
  17. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
  18. Wolak, Frank A, 1991. "The Local Nature of Hypothesis Tests Involving Inequality Constraints in Nonlinear Models," Econometrica, Econometric Society, vol. 59(4), pages 981-995, July.
  19. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
  20. repec:cwl:cwldpp:1840rr is not listed on IDEAS
  21. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
  22. Andrew Chesher & Adam M. Rosen & Konrad Smolinski, 2013. "An instrumental variable model of multiple discrete choice," Quantitative Economics, Econometric Society, vol. 4(2), pages 157-196, July.
  23. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
  24. Efstathios Paparoditis & Dimitris N. Politis, 2002. "The tapered block bootstrap for general statistics from stationary sequences," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 131-148, June.
  25. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
  26. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2011. "Sharp Identification Regions in Models With Convex Moment Predictions," Econometrica, Econometric Society, vol. 79(6), pages 1785-1821, November.
  27. Eberlein, Ernst, 1984. "Weak convergence of partial sums of absolutely regular sequences," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 291-293, October.
  28. Thomas J. Holmes, 2011. "The Diffusion of Wal‐Mart and Economies of Density," Econometrica, Econometric Society, vol. 79(1), pages 253-302, January.
  29. Stephen P. Ryan, 2012. "The Costs of Environmental Regulation in a Concentrated Industry," Econometrica, Econometric Society, vol. 80(3), pages 1019-1061, May.
  30. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Dec 2013.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:42/16. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.