IDEAS home Printed from https://ideas.repec.org/p/mea/meawpa/201805.html
   My bibliography  Save this paper

Instrument Validity Tests with Causal Trees: With an Application to the Same-sex Instrument

Author

Listed:
  • Guber, Raphael

    () (Munich Center for the Economics of Aging (MEA))

Abstract

The use of instrumental variables (IVs) to identify causal effects is widespread in empirical economics, but it is fundamentally impossible to proof their validity. However, assumptions sufficient for the identification of local average treatment effects (LATEs) jointly generate necessary conditions in the observed data that allow to refute an IV's validity. Suitable tests exist, but they may not be able to detect even severe violations of IV validity in practice. In this paper, we employ recently developed machine learning tools as data-driven improvements for these tests. Specifically, we use the causal tree (CT) algorithm from Athey and Imbens (2016) to directly search the covariate space for violations of the LATE assumptions. The new approach is applied to the sibling sex composition instrument in census data from China and the United States. We expect that, because of son preferences, the siblings sex instrument is invalid in the Chinese context. However, existing IV validity tests are unable to detect violations, while our CT based procedure does.

Suggested Citation

  • Guber, Raphael, 2018. "Instrument Validity Tests with Causal Trees: With an Application to the Same-sex Instrument," MEA discussion paper series 201805, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
  • Handle: RePEc:mea:meawpa:201805
    as

    Download full text from publisher

    File URL: http://mea.mpisoc.mpg.de/uploads/user_mea_discussionpapers/1872_MEA_DP_neu_26102018.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    2. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Kenneth I. Wolpin & Mark R. Rosenzweig, 2000. "Natural "Natural Experiments" in Economics," Journal of Economic Literature, American Economic Association, vol. 38(4), pages 827-874, December.
    5. Emla Fitzsimons & Bansi Malde, 2014. "Empirically probing the quantity–quality model," Journal of Population Economics, Springer;European Society for Population Economics, vol. 27(1), pages 33-68, January.
    6. Angrist, Joshua D & Evans, William N, 1998. "Children and Their Parents' Labor Supply: Evidence from Exogenous Variation in Family Size," American Economic Review, American Economic Association, vol. 88(3), pages 450-477, June.
    7. Rajeev Dehejia & Cristian Pop-Eleches & Cyrus Samii, 2015. "From Local to Global: External Validity in a Fertility Natural Experiment," NBER Working Papers 21459, National Bureau of Economic Research, Inc.
    8. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    9. repec:ucp:jpolec:doi:10.1086/692712 is not listed on IDEAS
    10. Aaronson, Daniel & Dehejia, Rajeev & Jordon, Andrew & Pop-Eleches, Cristian & Samii, Cyrus & Schultze, Karl, 2017. "The Effect of Fertility on Mothers’ Labor Supply over the Last Two Centuries," MPRA Paper 76768, University Library of Munich, Germany.
    11. Martin Huber & Giovanni Mellace, 2015. "Testing Instrument Validity for LATE Identification Based on Inequality Moment Constraints," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 398-411, May.
    12. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers CWP65/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Michael Knaus & Michael Lechner & Anthony Strittmatter, 2017. "Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach," Papers 1709.10279, arXiv.org, revised May 2018.
    14. repec:aea:aecrev:v:107:y:2017:i:5:p:261-65 is not listed on IDEAS
    15. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    16. Toru Kitagawa, 2015. "A Test for Instrument Validity," Econometrica, Econometric Society, vol. 83(5), pages 2043-2063, September.
    17. Jungmin Lee, 2008. "Sibling size and investment in children’s education: an asian instrument," Journal of Population Economics, Springer;European Society for Population Economics, vol. 21(4), pages 855-875, October.
    18. Sam Asher & Denis Nekipelov & Paul Novosad & Stephen P. Ryan, 2016. "Classification Trees for Heterogeneous Moment-Based Models," NBER Working Papers 22976, National Bureau of Economic Research, Inc.
    19. repec:tpr:restat:v:99:y:2017:i:2:p:305-313 is not listed on IDEAS
    20. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2016. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Bristol Economics Discussion Papers 16/674, Department of Economics, University of Bristol, UK, revised 08 Aug 2017.
    21. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    22. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    23. Martin Huber, 2015. "Testing the Validity of the Sibling Sex Ratio Instrument," LABOUR, CEIS, vol. 29(1), pages 1-14, March.
    24. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Dec 2017.
    25. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
    26. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    27. repec:spr:empeco:v:53:y:2017:i:3:d:10.1007_s00181-016-1148-7 is not listed on IDEAS
    28. Ismael Mourifié & Yuanyuan Wan, 2017. "Testing Local Average Treatment Effect Assumptions," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 305-313, May.
    29. Christopher J. Bennett, 2009. "Consistent and Asymptotically Unbiased MinP Tests of Multiple Inequality Moment Restrictions," Vanderbilt University Department of Economics Working Papers 0908, Vanderbilt University Department of Economics.
    30. repec:aea:aecrev:v:107:y:2017:i:5:p:546-50 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mea:meawpa:201805. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Henning Frankenberger). General contact details of provider: http://www.mea.mpisoc.mpg.de/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.