IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3575.html

Generalized Random Forests

Author

Listed:
  • Athey, Susan

    (Stanford University)

  • Tibshirani, Julie

    (Stanford University)

  • Wager, Stefan

    (Stanford University)

Abstract

We propose generalized random forests, a method for non-parametric statistical estimation based on random forests (Breiman, 2001) that can be used to fit any quantity of interest identified as the solution to a set of local moment equations. Following the literature on local maximum likelihood estimation, our method operates at a particular point in covariate space by considering a weighted set of nearby training examples; however, instead of using classical kernel weighting functions that are prone to a strong curse of dimensionality, we use an adaptive weighting function derived from a forest designed to express heterogeneity in the specified quantity of interest. We propose a flexible, computationally efficient algorithm for growing generalized random forests, develop a large sample theory for our method showing that our estimates are consistent and asymptotically Gaussian, and provide an estimator for their asymptotic variance that enables valid confidence intervals. We use our approach to develop new methods for three statistical tasks: non-parametric quantile regression, conditional average partial effect estimation, and heterogeneous treatment effect estimation via instrumental variables. A software implementation, grf for R and C++, is available from CRAN.

Suggested Citation

  • Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3575
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/441181
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.