IDEAS home Printed from https://ideas.repec.org/a/uwp/jhriss/v57y2022i2p597-636.html
   My bibliography  Save this article

Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach

Author

Listed:
  • Michael C. Knaus
  • Michael Lechner
  • Anthony Strittmatter

Abstract

We systematically investigate the effect heterogeneity of job search programs for unemployed workers. To investigate possibly heterogeneous employment effects, we combine nonexperimental causal empirical models with Lassotype estimators. The empirical analyses are based on rich administrative data from Swiss social security records. We find considerable heterogeneities during the first six months after the start of training. Consistent with previous results in the literature, unemployed persons with fewer employment opportunities profit more from participating in these programs. Finally, we show the potential of easy-to-implement program participation rules for improving average employment effects of these active labor market programs.

Suggested Citation

  • Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
  • Handle: RePEc:uwp:jhriss:v:57:y:2022:i:2:p:597-636
    Note: DOI: 10.3368/jhr.57.2.0718-9615R1
    as

    Download full text from publisher

    File URL: http://jhr.uwpress.org/cgi/reprint/57/2/597
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    2. Bruno Crépon & Esther Duflo & Marc Gurgand & Roland Rathelot & Philippe Zamora, 2013. "Do Labor Market Policies have Displacement Effects? Evidence from a Clustered Randomized Experiment," The Quarterly Journal of Economics, Oxford University Press, vol. 128(2), pages 531-580.
    3. Stefanie Behncke & Markus Frölich & Michael Lechner, 2010. "A Caseworker Like Me - Does The Similarity Between The Unemployed and Their Caseworkers Increase Job Placements?," Economic Journal, Royal Economic Society, vol. 120(549), pages 1430-1459, December.
    4. Bell, Stephen H. & Orr, Larry L., 2002. "Screening (and creaming?) applicants to job training programs: the AFDC homemaker-home health aide demonstrations," Labour Economics, Elsevier, vol. 9(2), pages 279-301, April.
    5. Yingqi Zhao & Donglin Zeng & A. John Rush & Michael R. Kosorok, 2012. "Estimating Individualized Treatment Rules Using Outcome Weighted Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1106-1118, September.
    6. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    7. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
    8. Conny Wunsch & Michael Lechner, 2008. "What Did All the Money Do? On the General Ineffectiveness of Recent West German Labour Market Programmes," Kyklos, Wiley Blackwell, vol. 61(1), pages 134-174, February.
    9. Gerard J. van den Berg & Bas van der Klaauw, 2006. "Counseling And Monitoring Of Unemployed Workers: Theory And Evidence From A Controlled Social Experiment," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(3), pages 895-936, August.
    10. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    11. Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
    12. Pieter Gautier & Paul Muller & Bas van der Klaauw & Michael Rosholm & Michael Svarer, 2018. "Estimating Equilibrium Effects of Job Search Assistance," Journal of Labor Economics, University of Chicago Press, vol. 36(4), pages 1073-1125.
    13. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    14. Jaap H. Abbring & Gerard J. van den Berg, 2004. "Analyzing the effect of dynamically assigned treatments using duration models, binary treatment models, and panel data models," Empirical Economics, Springer, vol. 29(1), pages 5-20, January.
    15. David Card & Jochen Kluve & Andrea Weber, 2010. "Active Labour Market Policy Evaluations: A Meta-Analysis," Economic Journal, Royal Economic Society, vol. 120(548), pages 452-477, November.
    16. Marco Caliendo & Reinhard Hujer & Stephan Thomsen, 2008. "Identifying effect heterogeneity to improve the efficiency of job creation schemes in Germany," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1101-1122.
    17. Bruce D. Meyer, 1995. "Lessons from the U.S. Unemployment Insurance Experiments," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 91-131, March.
    18. Dehejia, Rajeev H., 2005. "Program evaluation as a decision problem," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
    19. Yaoyao Xu & Menggang Yu & Ying‐Qi Zhao & Quefeng Li & Sijian Wang & Jun Shao, 2015. "Regularized outcome weighted subgroup identification for differential treatment effects," Biometrics, The International Biometric Society, vol. 71(3), pages 645-653, September.
    20. David Card & Jochen Kluve & Andrea Weber, 2018. "What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations," Journal of the European Economic Association, European Economic Association, vol. 16(3), pages 894-931.
    21. Martin Biewen & Bernd Fitzenberger & Aderonke Osikominu & Marie Paul, 2014. "The Effectiveness of Public-Sponsored Training Revisited: The Importance of Data and Methodological Choices," Journal of Labor Economics, University of Chicago Press, vol. 32(4), pages 837-897.
    22. Lechner, Michael & Smith, Jeffrey, 2007. "What is the value added by caseworkers?," Labour Economics, Elsevier, vol. 14(2), pages 135-151, April.
    23. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    24. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    25. Stefanie Behncke & Markus Frölich & Michael Lechner, 2010. "Unemployed and their caseworkers: should they be friends or foes?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 67-92, January.
    26. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    27. Bruno Crépon & Gerard J. van den Berg, 2016. "Active Labor Market Policies," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 521-546, October.
    28. Heckman, James J. & Navarro, Salvador, 2007. "Dynamic discrete choice and dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 136(2), pages 341-396, February.
    29. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    30. Katherine Casey & Rachel Glennerster & Edward Miguel, 2012. "Reshaping Institutions: Evidence on Aid Impacts Using a Preanalysis Plan," The Quarterly Journal of Economics, Oxford University Press, vol. 127(4), pages 1755-1812.
    31. Shuai Chen & Lu Tian & Tianxi Cai & Menggang Yu, 2017. "A general statistical framework for subgroup identification and comparative treatment scoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1199-1209, December.
    32. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    33. Rosholm, Michael, 2008. "Experimental Evidence on the Nature of the Danish Employment Miracle," IZA Discussion Papers 3620, Institute of Labor Economics (IZA).
    34. Richard Blundell & Monica Costa Dias & Costas Meghir & John Van Reenen, 2004. "Evaluating the Employment Impact of a Mandatory Job Search Program," Journal of the European Economic Association, MIT Press, vol. 2(4), pages 569-606, June.
    35. Michael Lechner, 1999. "Nonparametric bounds on employment and income effects of continuous vocational training in East Germany," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 1-28.
    36. Michael Gerfin & Michael Lechner, 2002. "A Microeconometric Evaluation of the Active Labour Market Policy in Switzerland," Economic Journal, Royal Economic Society, vol. 112(482), pages 854-893, October.
    37. Michael Lechner & Conny Wunsch, 2009. "Are Training Programs More Effective When Unemployment Is High?," Journal of Labor Economics, University of Chicago Press, vol. 27(4), pages 653-692, October.
    38. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    39. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    40. Lechner, Michael, 1999. "Earnings and Employment Effects of Continuous Off-the-Job Training in East Germany after Unification," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 74-90, January.
    41. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," Canadian Journal of Economics, Canadian Economics Association, vol. 48(2), pages 389-407, May.
    42. Graversen, Brian Krogh & van Ours, Jan C., 2008. "How to help unemployed find jobs quickly: Experimental evidence from a mandatory activation program," Journal of Public Economics, Elsevier, vol. 92(10-11), pages 2020-2035, October.
    43. Benjamin A. Olken, 2015. "Promises and Perils of Pre-analysis Plans," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 61-80, Summer.
    44. Lechner, Michael, 2009. "Sequential Causal Models for the Evaluation of Labor Market Programs," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 71-83.
    45. Adam Ciarleglio & Eva Petkova & R. Todd Ogden & Thaddeus Tarpey, 2015. "Treatment decisions based on scalar and functional baseline covariates," Biometrics, The International Biometric Society, vol. 71(4), pages 884-894, December.
    46. Frolich, Markus, 2008. "Statistical Treatment Choice: An Application to Active Labor Market Programs," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 547-558, June.
    47. Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
    48. Barbara Sianesi, 2004. "An Evaluation of the Swedish System of Active Labor Market Programs in the 1990s," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 133-155, February.
    49. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    50. Vansteelandt, Stijn & VanderWeele, Tyler J. & Tchetgen, Eric J. & Robins, James M., 2008. "Multiply Robust Inference for Statistical Interactions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1693-1704.
    51. Jaap H. Abbring & Gerard J. van den Berg, 2003. "The Nonparametric Identification of Treatment Effects in Duration Models," Econometrica, Econometric Society, vol. 71(5), pages 1491-1517, September.
    52. Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers CWP35/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    53. Blasco, Sylvie & Rosholm, Michael, 2011. "The Impact of Active Labour Market Policy on Post-Unemployment Outcomes: Evidence from a Social Experiment in Denmark," IZA Discussion Papers 5631, Institute of Labor Economics (IZA).
    54. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    55. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Supplementary Appendix for "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"," Papers 1305.6099, arXiv.org, revised Jun 2013.
    56. Martin Huber & Michael Lechner & Giovanni Mellace, 2017. "Why Do Tougher Caseworkers Increase Employment? The Role of Program Assignment as a Causal Mechanism," The Review of Economics and Statistics, MIT Press, vol. 99(1), pages 180-183, March.
    57. Mark C. Berger & Dan Black & Jeffrey Smith, 2000. "Evaluating Profiling as a Means of Allocating Government Services," University of Western Ontario, Departmental Research Report Series 200018, University of Western Ontario, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    2. Doerr, Annabelle, 2022. "Vocational training for female job returners - Effects on employment, earnings and job quality," Labour Economics, Elsevier, vol. 75(C).
    3. Elena Denisova-Schmidt & Martin Huber & Elvira Leontyeva & Anna Solovyeva, 2021. "Combining experimental evidence with machine learning to assess anti-corruption educational campaigns among Russian university students," Empirical Economics, Springer, vol. 60(4), pages 1661-1684, April.
    4. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    5. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    6. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
    7. Denis Fougère & Nicolas Jacquemet, 2019. "Causal Inference and Impact Evaluation," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 510-511-5, pages 181-200.
    8. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Tinbergen Institute Discussion Papers 21-001/V, Tinbergen Institute.
    9. Dario Sansone & Anna Zhu, 2020. "Using Machine Learning to Create an Early Warning System for Welfare Recipients," Papers 2011.12057, arXiv.org, revised May 2021.
    10. Vikström, Johan & Söderström, Martin & Cederlöf, Jonas, 2021. "What makes a good caseworker?," Working Paper Series 2021:9, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    11. Buhl-Wiggers, Julie & Kerwin, Jason & Muñoz, Juan S. & Smith, Jeffrey A. & Thornton, Rebecca L., 2020. "Some Children Left Behind: Variation in the Effects of an Educational Intervention," IZA Discussion Papers 13598, Institute of Labor Economics (IZA).
    12. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    13. Ulrike Unterhofer & Conny Wunsch, 2022. "Macroeconomic Effects of Active Labour Market Policies: A Novel Instrumental Variables Approach," Papers 2211.12437, arXiv.org.
    14. Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org.
    15. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    16. Bonev, Petyo, 2020. "Nonparametric identification in nonseparable duration models with unobserved heterogeneity," Economics Working Paper Series 2005, University of St. Gallen, School of Economics and Political Science.
    17. Miller, Steve, 2020. "Causal forest estimation of heterogeneous and time-varying environmental policy effects," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    18. Doerr, Annabelle, 2022. "Vocational Training for Female Job Returners - Effects on Employment, Earnings and Job Quality," Working papers 2022/02, Faculty of Business and Economics - University of Basel.
    19. Anthony Strittmatter, 2018. "What Is the Value Added by Using Causal Machine Learning Methods in a Welfare Experiment Evaluation?," Papers 1812.06533, arXiv.org, revised Dec 2021.
    20. Andreas Gulyas & Krzysztof Pytka, 2019. "Understanding the Sources of Earnings Losses After Job Displacement: A Machine-Learning Approach," CRC TR 224 Discussion Paper Series crctr224_2019_131, University of Bonn and University of Mannheim, Germany.
    21. Pamela Giustinelli & Matthew D. Shapiro, 2018. "SeaTE: Subjective ex ante Treatment Effect of Health on Retirement," Working Papers wp382, University of Michigan, Michigan Retirement Research Center.
    22. Anna Baiardi & Andrea A. Naghi, 2021. "The Value Added of Machine Learning to Causal Inference: Evidence from Revisited Studies," Papers 2101.00878, arXiv.org.
    23. Guber, Raphael, 2018. "Instrument Validity Tests with Causal Trees: With an Application to the Same-sex Instrument," MEA discussion paper series 201805, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    24. Finn Lattimore & Daniel M. Steinberg & Anna Zhu, 2023. "The Economic Effect of Gaining a New Qualification Later in Life," Papers 2304.01490, arXiv.org, revised Apr 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
    2. Doerr, Annabelle & Strittmatter, Anthony, 2014. "Assignment Mechanisms, Selection Criteria, and the Effectiveness of Training Programs," Economics Working Paper Series 1421, University of St. Gallen, School of Economics and Political Science, revised May 2017.
    3. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    4. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    5. Muller, Paul & van der Klaauw, Bas & Heyma, Arjan, 2017. "Comparing Econometric Methods to Empirically Evaluate Job-Search Assistance," IZA Discussion Papers 10531, Institute of Labor Economics (IZA).
    6. Jonas Maibom & Michael Rosholm & Michael Svarer, 2017. "Experimental Evidence on the Effects of Early Meetings and Activation," Scandinavian Journal of Economics, Wiley Blackwell, vol. 119(3), pages 541-570, July.
    7. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    8. Katharina Dengler, 2019. "Effectiveness of sequences of classroom training for welfare recipients: what works best in West Germany?," Applied Economics, Taylor & Francis Journals, vol. 51(1), pages 1-46, January.
    9. Martin Biewen & Bernd Fitzenberger & Aderonke Osikominu & Marie Paul, 2014. "The Effectiveness of Public-Sponsored Training Revisited: The Importance of Data and Methodological Choices," Journal of Labor Economics, University of Chicago Press, vol. 32(4), pages 837-897.
    10. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    11. Sørensen, Kenneth Lykke, 2016. "Heterogeneous impacts on earnings from an early effort in labor market programs," Labour Economics, Elsevier, vol. 41(C), pages 266-279.
    12. Tobias Brändle & Lukas Fervers, 2021. "Give it Another Try: What are the Effects of a Job Creation Scheme Especially Designed for Hard-to-Place Workers?," Journal of Labor Research, Springer, vol. 42(3), pages 382-417, December.
    13. Paul Muller & Bas van der Klaauw & Arjan Heyma, 2020. "Comparing econometric methods to empirically evaluate activation programs for job seekers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 526-547, August.
    14. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    15. Huber, Martin & Lechner, Michael & Walter, Thomas & Wunsch, Conny, 2009. "Do German Welfare-to-Work Programmes Reduce Welfare and Increase Work?," CEPR Discussion Papers 7238, C.E.P.R. Discussion Papers.
    16. Lechner, Michael & Smith, Jeffrey, 2007. "What is the value added by caseworkers?," Labour Economics, Elsevier, vol. 14(2), pages 135-151, April.
    17. Doerr, Annabelle, 2022. "Vocational Training for Female Job Returners - Effects on Employment, Earnings and Job Quality," Working papers 2022/02, Faculty of Business and Economics - University of Basel.
    18. van der Klaauw, Bas & Ziegler, Lennart, 2019. "A Field Experiment on Labor Market Speeddates for Unemployed Workers," CEPR Discussion Papers 13516, C.E.P.R. Discussion Papers.
    19. Bergemann, Annette & Pohlan, Laura & Uhlendorff, Arne, 2017. "The impact of participation in job creation schemes in turbulent times," Labour Economics, Elsevier, vol. 47(C), pages 182-201.
    20. Doerr, Annabelle, 2022. "Vocational training for female job returners - Effects on employment, earnings and job quality," Labour Economics, Elsevier, vol. 75(C).

    More about this item

    JEL classification:

    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy
    • H43 - Public Economics - - Publicly Provided Goods - - - Project Evaluation; Social Discount Rate
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:jhriss:v:57:y:2022:i:2:p:597-636. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://jhr.uwpress.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: http://jhr.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.