IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp10532.html

Practical Procedures to Deal with Common Support Problems in Matching Estimation

Author

Listed:
  • Lechner, Michael

    (University of St. Gallen)

  • Strittmatter, Anthony

    (University of St. Gallen)

Abstract

This paper assesses the performance of common estimators adjusting for differences in covariates, such as matching and regression, when faced with so-called common support problems. It also shows how different procedures suggested in the literature affect the properties of such estimators. Based on an Empirical Monte Carlo simulation design, a lack of common support is found to increase the root mean squared error (RMSE) of all investigated parametric and semiparametric estimators. Dropping observations that are off support usually improves their performance, although the magnitude of the improvement depends on the particular method used.

Suggested Citation

  • Lechner, Michael & Strittmatter, Anthony, 2017. "Practical Procedures to Deal with Common Support Problems in Matching Estimation," IZA Discussion Papers 10532, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp10532
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp10532.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lechner, Michael & Wunsch, Conny, 2013. "Sensitivity of matching-based program evaluations to the availability of control variables," Labour Economics, Elsevier, vol. 21(C), pages 111-121.
    2. David Card & Jochen Kluve & Andrea Weber, 2010. "Active Labour Market Policy Evaluations: A Meta-Analysis," Economic Journal, Royal Economic Society, vol. 120(548), pages 452-477, November.
    3. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    4. Martin Biewen & Bernd Fitzenberger & Aderonke Osikominu & Marie Paul, 2014. "The Effectiveness of Public-Sponsored Training Revisited: The Importance of Data and Methodological Choices," Journal of Labor Economics, University of Chicago Press, vol. 32(4), pages 837-897.
    5. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    6. repec:iab:iabdpa:201423 is not listed on IDEAS
    7. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    8. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
    9. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    10. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LLC, vol. 4(3), pages 290-311, September.
    11. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    12. Ulf Rinne & Arne Uhlendorff & Zhong Zhao, 2013. "Vouchers and caseworkers in training programs for the unemployed," Empirical Economics, Springer, vol. 45(3), pages 1089-1127, December.
    13. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    14. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    15. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    16. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    17. Annabelle Doerr & Bernd Fitzenberger & Thomas Kruppe & Marie Paul & Anthony Strittmatter, 2017. "Employment and Earnings Effects of Awarding Training Vouchers in Germany," ILR Review, Cornell University, ILR School, vol. 70(3), pages 767-812, May.
    18. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    19. Martin Huber & Michael Lechner & Andreas Steinmayr, 2015. "Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour," Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
    20. Michael Lechner, 2008. "A Note on the Common Support Problem in Applied Evaluation Studies," Annals of Economics and Statistics, GENES, issue 91-92, pages 217-235.
    21. Imbens, Guido W. & Lemieux, Thomas, 2008. "Regression discontinuity designs: A guide to practice," Journal of Econometrics, Elsevier, vol. 142(2), pages 615-635, February.
    22. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    23. repec:adr:anecst:y:2008:i:91-92:p:11 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    2. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    3. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    4. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).
    5. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    6. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    7. Doerr, Annabelle, 2017. "Back to work: The long-term effects of vocational training for female job returners," Freiburg Discussion Papers on Constitutional Economics 17/02, Walter Eucken Institut e.V..
    8. Hagen, Tobias, 2016. "Econometric evaluation of a placement coaching program for recipients of disability insurance benefits in Switzerland," Working Paper Series 10, Frankfurt University of Applied Sciences, Faculty of Business and Law.
    9. Seonho Shin, 2022. "Evaluating the Effect of the Matching Grant Program for Refugees: An Observational Study Using Matching, Weighting, and the Mantel-Haenszel Test," Journal of Labor Research, Springer, vol. 43(1), pages 103-133, March.
    10. repec:iab:iabdpa:202005 is not listed on IDEAS
    11. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    12. Martin Huber & Michael Lechner & Anthony Strittmatter, 2018. "Direct and indirect effects of training vouchers for the unemployed," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(2), pages 441-463, February.
    13. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    14. Caliendo, Marco & Mahlstedt, Robert & Mitnik, Oscar A., 2017. "Unobservable, but unimportant? The relevance of usually unobserved variables for the evaluation of labor market policies," Labour Economics, Elsevier, vol. 46(C), pages 14-25.
    15. Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
    16. Martin Huber & Michael Lechner & Andreas Steinmayr, 2015. "Radius matching on the propensity score with bias adjustment: tuning parameters and finite sample behaviour," Empirical Economics, Springer, vol. 49(1), pages 1-31, August.
    17. Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
    18. Arun Advani & Tymon Słoczyński, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers 64/13, Institute for Fiscal Studies.
    19. Hagen, Tobias, 2016. "Econometric Evaluation of a Placement Coaching Program for Recipients of Disability Insurance Benefits in Switzerland," VfS Annual Conference 2016 (Augsburg): Demographic Change 145736, Verein für Socialpolitik / German Economic Association.
    20. Black, Dan A. & Joo, Joonhwi & LaLonde, Robert & Smith, Jeffrey A. & Taylor, Evan J., 2022. "Simple Tests for Selection: Learning More from Instrumental Variables," Labour Economics, Elsevier, vol. 79(C).
    21. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • J68 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Public Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp10532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.