Matching Estimators with Few Treated and Many Control Observations
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
- Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
References listed on IDEAS
- Taisuke Otsu & Yoshiyasu Rai, 2017.
"Bootstrap Inference of Matching Estimators for Average Treatment Effects,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1720-1732, October.
- Taisuke Otsu & Yoshiyasu Rai, 2015. "Bootstrap inference of matching estimators for average treatment effects," STICERD - Econometrics Paper Series /2015/580, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Bruno Ferman & Cristine Pinto, 2019.
"Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity,"
The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 452-467, July.
- Ferman, Bruno & Pinto, Cristine Campos de Xavier, 2015. "Inference in differences-in-differences with few treated groups and heteroskedasticity," Textos para discussão 406, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Ferman, Bruno & Pinto, Cristine, 2015. "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," MPRA Paper 67665, University Library of Munich, Germany.
- MacKinnon, James G. & Webb, Matthew D., 2020.
"Randomization inference for difference-in-differences with few treated clusters,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 435-450.
- James G. MacKinnon & Matthew D. Webb, 2016. "Randomization Inference for Difference-in-Differences with Few Treated Clusters," Carleton Economic Papers 16-11, Carleton University, Department of Economics.
- James G. MacKinnon & Matthew D. Webb, 2019. "Randomization Inference For Difference-in-differences With Few Treated Clusters," Working Paper 1355, Economics Department, Queen's University.
- LaLonde, Robert J, 1986.
"Evaluating the Econometric Evaluations of Training Programs with Experimental Data,"
American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
- Robert J. LaLonde, 1984. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," Working Papers 563, Princeton University, Department of Economics, Industrial Relations Section..
- Christoph Rothe, 2017.
"Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap,"
Econometrica, Econometric Society, vol. 85, pages 645-660, March.
- Rothe, Christoph, 2015. "Robust Confidence Intervals for Average Treatment Effects under Limited Overlap," IZA Discussion Papers 8758, Institute of Labor Economics (IZA).
- Laurent Gobillon & Thierry Magnac, 2016.
"Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls,"
The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," IDEI Working Papers 786, Institut d'Économie Industrielle (IDEI), Toulouse.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," TSE Working Papers 13-419, Toulouse School of Economics (TSE).
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE-Ecole d'économie de Paris (Postprint) halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Control," CESifo Working Paper Series 5077, CESifo.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," IZA Discussion Papers 7493, Institute of Labor Economics (IZA).
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Working Papers halshs-00849071, HAL.
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Post-Print halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE Working Papers halshs-00849071, HAL.
- Magnac, Thierry & Gobillon, Laurent, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," CEPR Discussion Papers 10253, C.E.P.R. Discussion Papers.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018.
"Inference Under Covariate-Adaptive Randomization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2015. "Inference under covariate-adaptive randomization," CeMMAP working papers 45/15, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2016. "Inference under Covariate-Adaptive Randomization," CeMMAP working papers CWP21/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization," CeMMAP working papers CWP25/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2016. "Inference under Covariate-Adaptive Randomization," CeMMAP working papers 21/16, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization," CeMMAP working papers 25/17, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2015. "Inference under covariate-adaptive randomization," CeMMAP working papers CWP45/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- A. Smith, Jeffrey & E. Todd, Petra, 2005.
"Does matching overcome LaLonde's critique of nonexperimental estimators?,"
Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
- Jeffrey Smith & Petra Todd, 2003. "Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 20035, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
- James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
- Guido W. Imbens, 2015.
"Matching Methods in Practice: Three Examples,"
Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 373-419.
- Imbens, Guido W., 2014. "Matching Methods in Practice: Three Examples," IZA Discussion Papers 8049, Institute of Labor Economics (IZA).
- Guido Imbens, 2014. "Matching Methods in Practice: Three Examples," NBER Working Papers 19959, National Bureau of Economic Research, Inc.
- Timothy G. Conley & Christopher R. Taber, 2011.
"Inference with "Difference in Differences" with a Small Number of Policy Changes,"
The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
- Timothy Conley & Christopher Taber, 2005. "Inference with "Difference in Differences" with a Small Number of Policy Changes," NBER Technical Working Papers 0312, National Bureau of Economic Research, Inc.
- Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020.
"The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," Economics Working Paper Series 1604, University of St. Gallen, School of Economics and Political Science.
- Bodory, Hugo & Camponovo, Lorenzo & Huber, Martin & Lechner, Michael, 2016. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," IZA Discussion Papers 9706, Institute of Labor Economics (IZA).
- Bodory, Hugo & Huber, Martin & Camponovo, Lorenzo & Lechner, Michael, 2016. "The finite sample performance of inference methods for propensity score matching and weighting estimators," FSES Working Papers 466, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Bruno Ferman, 2021.
"On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1764-1772, October.
- Bruno Ferman, 2019. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Papers 1906.06665, arXiv.org, revised May 2020.
- Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2014. "Finite Population Causal Standard Errors," NBER Working Papers 20325, National Bureau of Economic Research, Inc.
- Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
- Alberto Abadie & Guido W. Imbens, 2011.
"Bias-Corrected Matching Estimators for Average Treatment Effects,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
- Abadie, Alberto & Imbens, Guido W., 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 1-11.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Firpo Sergio & Possebom Vitor, 2018. "Synthetic Control Method: Inference, Sensitivity Analysis and Confidence Sets," Journal of Causal Inference, De Gruyter, vol. 6(2), pages 1-26, September.
- Alberto Abadie & Guido W. Imbens, 2008.
"On the Failure of the Bootstrap for Matching Estimators,"
Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
- Alberto Abadie & Guido W. Imbens, 2006. "On the Failure of the Bootstrap for Matching Estimators," NBER Technical Working Papers 0325, National Bureau of Economic Research, Inc.
- Imbens, Guido & Abadie, Alberto, 2008. "On the Failure of the Bootstrap for Matching Estimators," Scholarly Articles 3043415, Harvard University Department of Economics.
- Irene Botosaru & Bruno Ferman, 2019.
"On the role of covariates in the synthetic control method,"
The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
- Botosaru, Irene & Ferman, Bruno, 2017. "On the Role of Covariates in the Synthetic Control Method," MPRA Paper 80796, University Library of Munich, Germany.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021.
"An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers CWP62/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," University of California at San Diego, Economics Working Paper Series qt90m9d66s, Department of Economics, UC San Diego.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2017. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Papers 1712.09089, arXiv.org, revised May 2021.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers 62/17, Institute for Fiscal Studies.
- Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
- Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
- Timothy B. Armstrong & Michal Kolesár, 2021.
"Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness,"
Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
- Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2018.
- Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Michal Koles'ar, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Papers 1712.04594, arXiv.org, revised Jan 2021.
- Bruno Ferman & Cristine Pinto, 2021.
"Synthetic controls with imperfect pretreatment fit,"
Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
- Bruno Ferman & Cristine Pinto, 2019. "Synthetic Controls with Imperfect Pre-Treatment Fit," Papers 1911.08521, arXiv.org, revised Jan 2021.
- Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
- James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998.
"Characterizing Selection Bias Using Experimental Data,"
Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
- James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," NBER Working Papers 6699, National Bureau of Economic Research, Inc.
- Rajeev H. Dehejia & Sadek Wahba, 2002.
"Propensity Score-Matching Methods For Nonexperimental Causal Studies,"
The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
- Rajeev H. Dehejia & Sadek Wahba, 1998. "Propensity Score Matching Methods for Non-experimental Causal Studies," NBER Working Papers 6829, National Bureau of Economic Research, Inc.
- Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
- Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
- Ferman, Bruno & Pinto, Cristine Campos de Xavier, 2016.
"Revisiting the synthetic control estimator,"
Textos para discussão
421, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Ferman, Bruno & Pinto, Cristine, 2016. "Revisiting the Synthetic Control Estimator," MPRA Paper 73982, University Library of Munich, Germany.
- Juan Díaz & Tomás Rau & Jorge Rivera, 2015.
"A Matching Estimator Based on a Bilevel Optimization Problem,"
The Review of Economics and Statistics, MIT Press, vol. 97(4), pages 803-812, October.
- Juan Díaz & Tomás Rau & Jorge Rivera, 2012. "A matching estimator based on a bi-level optimization problem," Working Papers wp351, University of Chile, Department of Economics.
- Ferman, Bruno & Pinto, Cristine, 2017. "Placebo Tests for Synthetic Controls," MPRA Paper 78079, University Library of Munich, Germany.
- Alberto Abadie & Guido W. Imbens, 2012.
"A Martingale Representation for Matching Estimators,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 833-843, June.
- Abadie, Alberto & Imbens, Guido W., 2009. "A Martingale Representation for Matching Estimators," IZA Discussion Papers 4073, Institute of Labor Economics (IZA).
- Alberto Abadie & Guido Imbens, 2009. "A Martingale Representation for Matching Estimators," NBER Working Papers 14756, National Bureau of Economic Research, Inc.
- Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
- Jinyong Hahn & Ruoyao Shi, 2017.
"Synthetic Control and Inference,"
Econometrics, MDPI, vol. 5(4), pages 1-12, November.
- Ruoyao Shi & Jinyong Hahn, 2016. "Synthetic Control and Inference," Working Papers 201802, University of California at Riverside, Department of Economics, revised Nov 2017.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
- Ferman, Bruno, 2021.
"Matching estimators with few treated and many control observations,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
- Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
- Bruno Ferman, 2019. "Matching Estimators with Few Treated and Many Control Observations," Papers 1909.05093, arXiv.org, revised Mar 2021.
- Ferman, Bruno & Ponczek, Vladimir, 2017. "Should we drop covariate cells with attrition problems?," MPRA Paper 80686, University Library of Munich, Germany.
- Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhexiao Lin & Peng Ding & Fang Han, 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect," Econometrica, Econometric Society, vol. 91(6), pages 2187-2217, November.
- Biro, Aniko & Bisztray, Márta & da Fonseca, João G. & Molnár, Tímea Laura, 2023.
"Accident-Induced Absence from Work and Wage Ladders,"
IZA Discussion Papers
16312, Institute of Labor Economics (IZA).
- Anikó Bíró & Márta Bisztray & João G. da Fonseca & Tímea Laura Molnár, 2023. "Accident-induced absence from work and wage ladders," IFS Working Papers W23/30, Institute for Fiscal Studies.
- Anikó Bíró & Márta Bisztray & João G. da Fonseca & Tímea Molnár, 2023. "Accident-Induced Absence from Work and Wage Ladders," CERS-IE WORKING PAPERS 2321, Institute of Economics, Centre for Economic and Regional Studies.
- Luis Alvarez & Bruno Ferman & Raoni Oliveira, 2022. "Randomization Inference Tests for Shift-Share Designs," Papers 2206.00999, arXiv.org.
- Bruno Ferman, 2019. "Assessing Inference Methods," Papers 1912.08772, arXiv.org, revised Oct 2022.
- Raluca Maran, 2023. "Drivers of sovereign catastrophe bond issuance: an empirical analysis," SN Business & Economics, Springer, vol. 3(6), pages 1-20, June.
- Ferman, Bruno, 2021.
"Matching estimators with few treated and many control observations,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
- Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
- Bruno Ferman, 2019. "Matching Estimators with Few Treated and Many Control Observations," Papers 1909.05093, arXiv.org, revised Mar 2021.
- Heinrich, Victor, 2023. "Private Equity Transactions: Value Creation through Operational Engineering – Evidence from Europe," Junior Management Science (JUMS), Junior Management Science e. V., vol. 8(3), pages 634-657.
- Xin Su & Shengwen Wang, 2024. "Impact of China’s free trade zones on the innovation performance of firms: evidence from a quasi-natural experiment," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
- Brantly Callaway & Tong Li, 2020. "Evaluating Policies Early in a Pandemic: Bounding Policy Effects with Nonrandomly Missing Data," Papers 2005.09605, arXiv.org, revised Jan 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023.
"What’s trending in difference-in-differences? A synthesis of the recent econometrics literature,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
- Jonathan Roth & Pedro H. C. Sant'Anna & Alyssa Bilinski & John Poe, 2022. "What's Trending in Difference-in-Differences? A Synthesis of the Recent Econometrics Literature," Papers 2201.01194, arXiv.org, revised Jan 2023.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Timothy B. Armstrong & Michal Kolesár, 2021.
"Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness,"
Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
- Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2018.
- Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Michal Koles'ar, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Papers 1712.04594, arXiv.org, revised Jan 2021.
- Advani, Arun & Sloczynski, Tymon, 2013.
"Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies,"
IZA Discussion Papers
7874, Institute of Labor Economics (IZA).
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 11862, Institute of Labor Economics (IZA).
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," Working Papers 124, Brandeis University, Department of Economics and International Business School.
- Arun Advani & Toru Kitagawa & Tymon Sloczynski, 2018. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP56/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Sloczynski, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP64/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Arun Advani & Tymon Słoczyński, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers 64/13, Institute for Fiscal Studies.
- Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020.
"Cherry Picking with Synthetic Controls,"
Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
- Ferman, Bruno & Pinto, Cristine Campos de Xavier & Possebom, Vítor Augusto, 2016. "Cherry picking with synthetic controls," Textos para discussão 420, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Ferman, Bruno & Pinto, Cristine & Possebom, Vitor, 2017. "Cherry Picking with Synthetic Controls," MPRA Paper 78213, University Library of Munich, Germany.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021.
"An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers CWP62/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2017. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Papers 1712.09089, arXiv.org, revised May 2021.
- Victor Chernozhukov & Kaspar Wüthrich & Yu Zhu, 2017. "An exact and robust conformal inference method for counterfactual and synthetic controls," CeMMAP working papers 62/17, Institute for Fiscal Studies.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," University of California at San Diego, Economics Working Paper Series qt90m9d66s, Department of Economics, UC San Diego.
- Jeffrey Smith & Arthur Sweetman, 2016.
"Viewpoint: Estimating the causal effects of policies and programs,"
Canadian Journal of Economics, Canadian Economics Association, vol. 49(3), pages 871-905, August.
- Jeffrey Smith & Arthur Sweetman, 2016. "Viewpoint: Estimating the causal effects of policies and programs," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 49(3), pages 871-905, August.
- Smith, Jeffrey A. & Sweetman, Arthur, 2016. "Viewpoint: Estimating the Causal Effects of Policies and Programs," IZA Discussion Papers 10108, Institute of Labor Economics (IZA).
- Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021.
"Outliers in Semi-Parametric Estimation of Treatment Effects,"
Econometrics, MDPI, vol. 9(2), pages 1-32, April.
- Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Development Research Working Paper Series 06/2017, Institute for Advanced Development Studies.
- Darwin Ugarte Ontiveros & Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta, 2017. "Outliers in semi-parametric Estimation of Treatment Effects," Documentos de Trabajo de Valor Público 15810, Universidad EAFIT.
- Steven Lehrer & Gregory Kordas, 2013.
"Matching using semiparametric propensity scores,"
Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
- Steven Lehrer & Gregory Kordas, 2004. "Matching using Semiparametric Propensity Scores," Econometric Society 2004 North American Summer Meetings 441, Econometric Society.
- Tymon Słoczyński, 2015.
"The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(4), pages 588-604, August.
- Tymon Sloczynski, 2012. "The Oaxaca-Blinder unexplained component as a treatment effects estimator," Working Papers 61, Department of Applied Econometrics, Warsaw School of Economics.
- Słoczyński, Tymon, 2013. "The Oaxaca–Blinder Unexplained Component as a Treatment Effects Estimator," MPRA Paper 50660, University Library of Munich, Germany.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017.
"The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation,"
Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The finite sample performance of semi- and nonparametric estimators for treatment effects and policy evaluation," FSES Working Papers 454, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2015. "The Finite Sample Performance of Semi- and Nonparametric Estimators for Treatment Effects and Policy Evaluation," IZA Discussion Papers 8756, Institute of Labor Economics (IZA).
- David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019.
"Mostly harmless simulations? Using Monte Carlo studies for estimator selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
- Arun Advani & Toru Kitagawa & Tymon S{l}oczy'nski, 2018. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," Papers 1809.09527, arXiv.org, revised Apr 2019.
- Advani, Arun & Kitagawa, Toru & Słoczyński, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," The Warwick Economics Research Paper Series (TWERPS) 1192, University of Warwick, Department of Economics.
- Advani, Arun & Kitagawa, Toru & Sloczynski, Tymon, 2019. "Mostly Harmless Simulations? Using Monte Carlo Studies for Estimator Selection," CAGE Online Working Paper Series 411, Competitive Advantage in the Global Economy (CAGE).
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Lechner, Michael & Wunsch, Conny, 2013.
"Sensitivity of matching-based program evaluations to the availability of control variables,"
Labour Economics, Elsevier, vol. 21(C), pages 111-121.
- Lechner, Michael & Wunsch, Conny, 2011. "Sensitivity of Matching-Based Program Evaluations to the Availability of Control Variables," IZA Discussion Papers 5553, Institute of Labor Economics (IZA).
- Lechner, Michael & Wunsch, Conny, 2011. "Sensitivity of matching-based program evaluations to the availability of control variables," Economics Working Paper Series 1105, University of St. Gallen, School of Economics and Political Science.
- Michael Lechner & Conny Wunsch, 2011. "Sensitivity of Matching-Based Program Evaluations to the Availability of Control Variables," CESifo Working Paper Series 3381, CESifo.
- Lechner, Michael & Wunsch, Conny, 2011. "Sensitivity of matching-based program evaluations to the availability of control variables," CEPR Discussion Papers 8294, C.E.P.R. Discussion Papers.
- Zeqin Liu & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Statistical Analysis and Evaluation of Macroeconomic Policies: A Selective Review," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201904, University of Kansas, Department of Economics, revised Mar 2019.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021.
"The Augmented Synthetic Control Method,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1789-1803, October.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2018. "The Augmented Synthetic Control Method," Papers 1811.04170, arXiv.org, revised Jul 2020.
- Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2021. "The Augmented Synthetic Control Method," NBER Working Papers 28885, National Bureau of Economic Research, Inc.
- Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
More about this item
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1909.05093. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.