Randomization inference for difference-in-differences with few treated clusters
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jeconom.2020.04.024
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- James G. MacKinnon & Matthew D. Webb, 2019. "Randomization Inference For Difference-in-differences With Few Treated Clusters," Working Paper 1355, Economics Department, Queen's University.
- James G. MacKinnon & Matthew D. Webb, 2016. "Randomization Inference for Difference-in-Differences with Few Treated Clusters," Carleton Economic Papers 16-11, Carleton University, Department of Economics.
References listed on IDEAS
- Guido W. Imbens & Michal Kolesár, 2016.
"Robust Standard Errors in Small Samples: Some Practical Advice,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
- Guido W. Imbens & Michal Kolesar, 2012. "Robust Standard Errors in Small Samples: Some Practical Advice," NBER Working Papers 18478, National Bureau of Economic Research, Inc.
- James G. MacKinnon & Matthew D. Webb, 2018.
"The wild bootstrap for few (treated) clusters,"
Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
- James G. MacKinnon & Matthew D. Webb, 2017. "The Wild Bootstrap For Few (treated) Clusters," Working Paper 1364, Economics Department, Queen's University.
- Bruno Ferman & Cristine Pinto, 2019.
"Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity,"
The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 452-467, July.
- Ferman, Bruno & Pinto, Cristine Campos de Xavier, 2015. "Inference in differences-in-differences with few treated groups and heteroskedasticity," Textos para discussão 406, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Ferman, Bruno & Pinto, Cristine, 2015. "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," MPRA Paper 67665, University Library of Munich, Germany.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008.
"Bootstrap-Based Improvements for Inference with Clustered Errors,"
The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
- Jonah B. Gelbach & Doug Miller & A. Colin Cameron, 2006. "Bootstrap-Based Improvements for Inference with Clustered Errors," Working Papers 128, University of California, Davis, Department of Economics.
- A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2007. "Bootstrap-Based Improvements for Inference with Clustered Errors," NBER Technical Working Papers 0344, National Bureau of Economic Research, Inc.
- Timothy G. Conley & Christopher R. Taber, 2011.
"Inference with "Difference in Differences" with a Small Number of Policy Changes,"
The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
- Timothy Conley & Christopher Taber, 2005. "Inference with "Difference in Differences" with a Small Number of Policy Changes," NBER Technical Working Papers 0312, National Bureau of Economic Research, Inc.
- Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019.
"Asymptotic theory and wild bootstrap inference with clustered errors,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2018. "Asymptotic Theory And Wild Bootstrap Inference With Clustered Errors," Working Paper 1399, Economics Department, Queen's University.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ørregaard Nielsen, 2019. "Asymptotic Theory and Wild Bootstrap Inference with Clustered Errors," CREATES Research Papers 2019-05, Department of Economics and Business Economics, Aarhus University.
- Cyrus J. DiCiccio & Joseph P. Romano, 2017. "Robust Permutation Tests For Correlation And Regression Coefficients," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1211-1220, July.
- Dufour, Jean-Marie, 2006.
"Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics,"
Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
- DUFOUR, Jean-Marie, 2005. "Monte Carlo Tests with Nuisance Parameters: A General Approach to Finite-Sample Inference and Nonstandard Asymptotics," Cahiers de recherche 2005-03, Universite de Montreal, Departement de sciences economiques.
- Jean-Marie Dufour, 2005. "Monte Carlo tests with nuisance parameters: a general approach to finite-sample inference and non-standard asymptotics," CIRANO Working Papers 2005s-02, CIRANO.
- DUFOUR, Jean-Marie, 2005. "Monte Carlo Tests with Nuisance Parameters: A General Approach to Finite-Sample Inference and Nonstandard Asymptotics," Cahiers de recherche 03-2005, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Andrew V. Carter & Kevin T. Schnepel & Douglas G. Steigerwald, 2017. "Asymptotic Behavior of a t -Test Robust to Cluster Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 698-709, July.
- James G. MacKinnon & Matthew D. Webb, 2018.
"The wild bootstrap for few (treated) clusters,"
Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
- James G. MacKinnon & Matthew D. Webb, 2018. "The wild bootstrap for few (treated) clusters," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135.
- James G. MacKinnon & Matthew D. Webb, 2017. "The Wild Bootstrap For Few (treated) Clusters," Working Paper 1364, Economics Department, Queen's University.
- Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
- A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
- James G. MacKinnon & Matthew D. Webb, 2017.
"Wild Bootstrap Inference for Wildly Different Cluster Sizes,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
- James G. MacKinnon & Matthew D. Webb, 2015. "Wild Bootstrap Inference For Wildly Different Cluster Sizes," Working Paper 1314, Economics Department, Queen's University.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Rustam Ibragimov & Ulrich K. Müller, 2016. "Inference with Few Heterogeneous Clusters," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 83-96, March.
- James G. MacKinnon & Matthew D. Webb, 2019.
"Wild Bootstrap Randomization Inference for Few Treated Clusters,"
Advances in Econometrics, in: The Econometrics of Complex Survey Data, volume 39, pages 61-85,
Emerald Group Publishing Limited.
- James G. MacKinnon & Matthew D. Webb, 2018. "Wild Bootstrap Randomization Inference For Few Treated Clusters," Working Paper 1404, Economics Department, Queen's University.
- Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012.
"Clustering, Spatial Correlations, and Randomization Inference,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
- Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesar, 2010. "Clustering, Spatial Correlations and Randomization Inference," NBER Working Papers 15760, National Bureau of Economic Research, Inc.
- Alwyn Young, 2019. "Channeling Fisher: Randomization Tests and the Statistical Insignificance of Seemingly Significant Experimental Results," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(2), pages 557-598.
- Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Cluster-robust inference: A guide to empirical practice,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
- Matthew D. Webb & James MacKinnon & Morten Nielsen, 2021. "Cluster–robust inference: A guide to empirical practice," Economics Virtual Symposium 2021 6, Stata Users Group.
- James MacKinnon & Morten Ørregaard Nielsen, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," CREATES Research Papers 2022-08, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
- James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
- Hansen, Bruce E. & Lee, Seojeong, 2019.
"Asymptotic theory for clustered samples,"
Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
- Bruce E. Hansen & Seojeong Jay Lee, 2017. "Asymptotic Theory for Clustered Samples," Discussion Papers 2017-18, School of Economics, The University of New South Wales.
- Bruce E. Hansen & Seojeong Lee, 2019. "Asymptotic Theory for Clustered Samples," Papers 1902.01497, arXiv.org.
- MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023.
"Testing for the appropriate level of clustering in linear regression models,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Testing for the appropriate level of clustering in linear regression models," Papers 2301.04522, arXiv.org, revised Mar 2023.
- Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org, revised Feb 2023.
- James G. MacKinnon, 2019.
"How cluster-robust inference is changing applied econometrics,"
Canadian Journal of Economics, Canadian Economics Association, vol. 52(3), pages 851-881, August.
- James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
- James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Working Paper 1413, Economics Department, Queen's University.
- Bruno Ferman, 2023.
"Inference in difference‐in‐differences: How much should we trust in independent clusters?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
- Bruno Ferman, 2019. "Inference in Difference-in-Differences: How Much Should We Trust in Independent Clusters?," Papers 1909.01782, arXiv.org, revised Sep 2022.
- Ferman, Bruno, 2019. "Inference in Differences-in-Differences: How Much Should We Trust in Independent Clusters?," MPRA Paper 93746, University Library of Munich, Germany.
- Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021.
"Wild Bootstrap and Asymptotic Inference With Multiway Clustering,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
- James G. MacKinnon & Morten Ø. Nielsen & Matthew D. Webb, 2019. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," Working Paper 1415, Economics Department, Queen's University.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2020. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," CREATES Research Papers 2020-06, Department of Economics and Business Economics, Aarhus University.
- James G. MacKinnon & Matthew D. Webb, 2017. "Pitfalls When Estimating Treatment Effects Using Clustered Data," Working Paper 1387, Economics Department, Queen's University.
- Matthew D. Webb, 2023.
"Reworking wild bootstrap‐based inference for clustered errors,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
- Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
- Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023.
"Fast and reliable jackknife and bootstrap methods for cluster‐robust inference,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference," Working Paper 1485, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference," Papers 2301.04527, arXiv.org, revised Feb 2023.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023.
"Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust,"
Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Working Paper 1483, Economics Department, Queen's University.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Leverage, Influence, and the Jackknife in Clustered Regression Models: Reliable Inference Using summclust," Papers 2205.03288, arXiv.org, revised Nov 2023.
- Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019.
"Asymptotic theory and wild bootstrap inference with clustered errors,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2018. "Asymptotic Theory And Wild Bootstrap Inference With Clustered Errors," Working Paper 1399, Economics Department, Queen's University.
- Antoine A. Djogbenou & James G. MacKinnon & Morten Ørregaard Nielsen, 2019. "Asymptotic Theory and Wild Bootstrap Inference with Clustered Errors," CREATES Research Papers 2019-05, Department of Economics and Business Economics, Aarhus University.
- Andreas Hagemann, 2020. "Inference with a single treated cluster," Papers 2010.04076, arXiv.org.
- James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2024.
"Cluster-robust jackknife and bootstrap inference for binary response models,"
Papers
2406.00650, arXiv.org.
- James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2024. "Cluster-Robust Jackknife and Bootstrap Inference for Binary Response Models," Working Paper 1515, Economics Department, Queen's University.
- Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
- Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
- Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023.
"What’s trending in difference-in-differences? A synthesis of the recent econometrics literature,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
- Jonathan Roth & Pedro H. C. Sant'Anna & Alyssa Bilinski & John Poe, 2022. "What's Trending in Difference-in-Differences? A Synthesis of the Recent Econometrics Literature," Papers 2201.01194, arXiv.org, revised Jan 2023.
More about this item
Keywords
Cluster-robust inference; CRVE; Grouped data; Clustered data; Wild cluster bootstrap; Randomization inference; Difference-in-differences; DiD;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:218:y:2020:i:2:p:435-450. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.