IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1413.html
   My bibliography  Save this paper

How cluster-robust inference is changing applied econometrics

Author

Listed:
  • James G. MacKinnon

    () (Queen's University)

Abstract

In many fields of economics, and also in other disciplines, it is hard to justify the assumption that the random error terms in regression models are uncorrelated. It seems more plausible to assume that they are correlated within clusters, such as geographical areas or time periods, but uncorrelated across clusters. It has therefore become very popular to use "clustered" standard errors, which are robust against arbitrary patterns of within-cluster variation and covariation. Conventional methods for inference using clustered standard errors work very well when the model is correct and the data satisfy certain conditions, but they can produce very misleading results in other cases. This paper discusses some of the issues that users of these methods need to be aware of.

Suggested Citation

  • James G. MacKinnon, 2019. "How cluster-robust inference is changing applied econometrics," Working Paper 1413, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1413
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1413.pdf
    File Function: First version 2019
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guido W. Imbens & Michal Kolesár, 2016. "Robust Standard Errors in Small Samples: Some Practical Advice," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
    2. James G. MacKinnon & Matthew D. Webb, 2018. "The wild bootstrap for few (treated) clusters," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
    3. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    4. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
    5. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    6. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(2), pages 238-249, April.
    7. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    8. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    9. Stanislav Kolenikov, 2010. "Resampling variance estimation for complex survey data," Stata Journal, StataCorp LP, vol. 10(2), pages 165-199, June.
    10. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    11. Andrew V. Carter & Kevin T. Schnepel & Douglas G. Steigerwald, 2017. "Asymptotic Behavior of a t -Test Robust to Cluster Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 698-709, July.
    12. Francesco Decarolis, 2014. "Awarding Price, Contract Performance, and Bids Screening: Evidence from Procurement Auctions," American Economic Journal: Applied Economics, American Economic Association, vol. 6(1), pages 108-132, January.
    13. James G. MacKinnon & Matthew D. Webb, 2018. "The wild bootstrap for few (treated) clusters," Econometrics Journal, Royal Economic Society, vol. 21(2), pages 114-135, June.
    14. repec:tpr:journl:edfpol:v:10:y:2015:i:4:p:508-534 is not listed on IDEAS
    15. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Davidson, Russell & MacKinnon, James G., 1999. "The Size Distortion Of Bootstrap Tests," Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
    18. James E. Pustejovsky & Elizabeth Tipton, 2018. "Small-Sample Methods for Cluster-Robust Variance Estimation and Hypothesis Testing in Fixed Effects Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 672-683, October.
    19. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    20. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    21. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, Oxford University Press, vol. 119(1), pages 249-275.
    22. Cory Koedel & Eric Parsons & Michael Podgursky & Mark Ehlert, 2015. "Teacher Preparation Programs and Teacher Quality: Are There Real Differences Across Programs?," Education Finance and Policy, MIT Press, vol. 10(4), pages 508-534, October.
    23. James G. MacKinnon & Matthew D. Webb, 2019. "Wild Bootstrap Randomization Inference for Few Treated Clusters," Advances in Econometrics, in: Kim P. Huynh & David T. Jacho-chávez & Gautam Tripathi (ed.), The Econometrics of Complex Survey Data, volume 39, pages 61-85, Emerald Publishing Ltd.
    24. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    25. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    26. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    27. Keith Finlay & Leandro M. Magnusson, 2019. "Two applications of wild bootstrap methods to improve inference in cluster‐IV models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 911-933, September.
    28. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    29. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Back to School Reading
      by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2019-09-01 13:40:00

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerling, Lena & Kellermann, Kim Leonie, 2019. "The impact of election information shocks on populist party preferences: Evidence from Germany," CIW Discussion Papers 3/2019, University of Münster, Center for Interdisciplinary Economics (CIW).
    2. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    3. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2020. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
    4. Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org.
    5. Sanghyun Hong & W. Robert Reed, 2019. "Towards an Experimental Framework for Assessing Meta-Analysis Methods, with a Focus on Andrews-Kasy Estimators," Working Papers in Economics 19/13, University of Canterbury, Department of Economics and Finance.
    6. Samantha Rawlings & Zahra Siddique, 2020. "Domestic Violence and Child Mortality in the Developing World," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 723-750, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    2. James G. MacKinnon & Morten Ø. Nielsen & Matthew D. Webb, 2019. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," Working Paper 1415, Economics Department, Queen's University.
    3. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    4. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    5. James G. MacKinnon & Matthew D. Webb, 2017. "Pitfalls When Estimating Treatment Effects Using Clustered Data," Working Paper 1387, Economics Department, Queen's University.
    6. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2020. "Testing for the appropriate level of clustering in linear regression models," Working Paper 1428, Economics Department, Queen's University.
    7. Antoine A. Djogbenou & James G. MacKinnon & Morten Ø. Nielsen, 2017. "Validity Of Wild Bootstrap Inference With Clustered Errors," Working Paper 1383, Economics Department, Queen's University.
    8. MacKinnon, James G. & Webb, Matthew D., 2020. "Randomization inference for difference-in-differences with few treated clusters," Journal of Econometrics, Elsevier, vol. 218(2), pages 435-450.
    9. Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org.
    10. James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2017. "Bootstrap And Asymptotic Inference With Multiway Clustering," Working Paper 1386, Economics Department, Queen's University.
    11. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    12. Dorner, Matthias & Görlitz, Katja, 2020. "Training, wages and a missing school graduation cohort," Ruhr Economic Papers 858, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    13. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Dorner, Matthias & Görlitz, Katja, 2020. "Training, Wages and a Missing School Graduation Cohort," IZA Discussion Papers 13490, Institute of Labor Economics (IZA).
    15. Carpenter, Christopher S. & Gonzales, Gilbert & McKay, Tara & Sansone, Dario, 2020. "Effects of the Affordable Care Act Dependent Coverage Mandate on Health Insurance Coverage for Individuals in Same-Sex Couples," IZA Discussion Papers 13119, Institute of Labor Economics (IZA).
    16. Clarke, Damian & Tapia Schythe, Kathya, 2020. "Implementing the Panel Event Study," MPRA Paper 101669, University Library of Munich, Germany.
    17. Lauren E. Jones & Kevin Milligan & Mark Stabile, 2019. "Child cash benefits and family expenditures: Evidence from the National Child Benefit," Canadian Journal of Economics, Canadian Economics Association, vol. 52(4), pages 1433-1463, November.
    18. Bruno Ferman & Cristine Pinto, 2019. "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 452-467, July.
    19. Bullinger, Lindsey Rose, 2019. "The Effect of Paid Family Leave on Infant and Parental Health in the United States," Journal of Health Economics, Elsevier, vol. 66(C), pages 101-116.
    20. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.

    More about this item

    Keywords

    clustered data; cluster-robust variance estimator; CRVE; wild cluster bootstrap; robust inference;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1413. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock). General contact details of provider: http://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.