IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v98y2016i4p701-712.html
   My bibliography  Save this article

Robust Standard Errors in Small Samples: Some Practical Advice

Author

Listed:
  • Guido W. Imbens

    (Stanford University and NBER)

  • Michal Kolesár

    (Princeton University)

Abstract

We study the properties of heteroskedasticity-robust confidence intervals for regression parameters. We show that confidence intervals based on a degrees-of-freedom correction suggested by Bell and McCaffrey (2002) are a natural extension of a principled approach to the Behrens-Fisher problem. We suggest a further improvement for the case with clustering. We show that these standard errors can lead to substantial improvements in coverage rates even for samples with fifty or more clusters.We recommend that researchers routinely calculate the Bell-McCaffrey degrees-of-freedom adjustment to assess potential problems with conventional robust standard errors.

Suggested Citation

  • Guido W. Imbens & Michal Kolesár, 2016. "Robust Standard Errors in Small Samples: Some Practical Advice," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
  • Handle: RePEc:tpr:restat:v:98:y:2016:i:4:p:701-712
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00552
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. James H. Stock & Mark W. Watson, 2008. "Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression," Econometrica, Econometric Society, vol. 76(1), pages 155-174, January.
    2. Chesher, Andrew & Austin, Gerard, 1991. "The finite-sample distributions of heteroskedasticity robust Wald statistics," Journal of Econometrics, Elsevier, vol. 47(1), pages 153-173, January.
    3. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    4. Hausman, Jerry & Palmer, Christopher, 2012. "Heteroskedasticity-robust inference in finite samples," Economics Letters, Elsevier, vol. 116(2), pages 232-235.
    5. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    6. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    7. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    8. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Behrens-Fisher Problem; Robust Standard Errors; Small Samples; Clustering;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:98:y:2016:i:4:p:701-712. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ann Olson). General contact details of provider: https://www.mitpressjournals.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.