IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Robust Inference with Clustered Data

Listed author(s):
  • A. Colin Cameron
  • Douglas L. Miller

    (Department of Economics, University of California Davis)

In this paper we survey methods to control for regression model error that is correlated within groups or clusters, but is uncorrelated across groups or clusters. Then failure to control for the clustering can lead to understatement of standard errors and overstatement of statistical significance, as emphasized most notably in empirical studies by Moulton (1990) and Bertrand, Duflo and Mullainathan (2004). We emphasize OLS estimation with statistical inference based on minimal assumptions regarding the error correlation process. Complications we consider include cluster-specific fixed effects, few clusters, multi-way clustering, more efficient feasible GLS estimation, and adaptation to nonlinear and instrumental variables estimators.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://wp.econ.ucdavis.edu/10-6.pdf
Download Restriction: no

Paper provided by University of California, Davis, Department of Economics in its series Working Papers with number 106.

as
in new window

Length: 28
Date of creation: 25 Mar 2010
Handle: RePEc:cda:wpaper:10-6
Contact details of provider: Postal:
One Shields Ave., Davis, CA 95616-8578

Phone: (530) 752-0741
Fax: (530) 752-9382
Web page: http://www.econ.ucdavis.edu
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
  2. Greenwald, Bruce C., 1983. "A general analysis of bias in the estimated standard errors of least squares coefficients," Journal of Econometrics, Elsevier, vol. 22(3), pages 323-338, August.
  3. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
  4. Austin Nichols & Mark E Schaffer, 2007. "Clustered standard errors in Stata," United Kingdom Stata Users' Group Meetings 2007 07, Stata Users Group.
  5. repec:pri:indrel:dsp01v118rd530 is not listed on IDEAS
  6. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
  7. Mitchell A. Petersen, 2005. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," NBER Working Papers 11280, National Bureau of Economic Research, Inc.
  8. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
  9. Cameron, A. Colin & Gelbach, Jonah B. & Miller, Douglas L., 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 238-249.
  10. Marcel Fafchamps & Flore Gubert, 2005. "The Formation of Risk Sharing Networks," Working Papers DT/2005/13, DIAL (Développement, Institutions et Mondialisation).
  11. Caroline Hoxby & M. Daniele Paserman, 1998. "Overidentification Tests with Grouped Data," NBER Technical Working Papers 0223, National Bureau of Economic Research, Inc.
  12. Kiefer, Nicholas M., 1980. "Estimation of fixed effect models for time series of cross-sections with arbitrary intertemporal covariance," Journal of Econometrics, Elsevier, vol. 14(2), pages 195-202, October.
  13. James H. Stock & Mark W. Watson, 2006. "Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression," NBER Technical Working Papers 0323, National Bureau of Economic Research, Inc.
  14. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
  15. repec:fth:prinin:374 is not listed on IDEAS
  16. Keith Finlay & Leandro M. Magnusson, 2009. "Implementing weak-instrument robust tests for a general class of instrumental-variables models," Stata Journal, StataCorp LP, vol. 9(3), pages 398-421, September.
  17. Hausman, Jerry & Kuersteiner, Guido, 2008. "Difference in difference meets generalized least squares: Higher order properties of hypotheses tests," Journal of Econometrics, Elsevier, vol. 144(2), pages 371-391, June.
  18. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
  19. Angrist, Joshua & Lavy, Victor, 2002. "The Effect of High School Matriculation Awards: Evidence from Randomized Trials," CEPR Discussion Papers 3827, C.E.P.R. Discussion Papers.
  20. Bhattacharya, Debopam, 2005. "Asymptotic inference from multi-stage samples," Journal of Econometrics, Elsevier, vol. 126(1), pages 145-171, May.
  21. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
  22. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2002. "How Much Should We Trust Differences-in-Differences Estimates?," NBER Working Papers 8841, National Bureau of Economic Research, Inc.
  23. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
  24. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
  25. Pepper, John V., 2002. "Robust inferences from random clustered samples: an application using data from the panel study of income dynamics," Economics Letters, Elsevier, vol. 75(3), pages 341-345, May.
  26. Chernozhukov, Victor & Hansen, Christian, 2008. "The reduced form: A simple approach to inference with weak instruments," Economics Letters, Elsevier, vol. 100(1), pages 68-71, July.
  27. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
  28. Hersch, Joni, 1998. "Compensating Differentials for Gender-Specific Job Injury Risks," American Economic Review, American Economic Association, vol. 88(3), pages 598-627, June.
  29. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
  30. Christopher L. Foote, 2007. "Space and time in macroeconomic panel data: young workers and state-level unemployment revisited," Working Papers 07-10, Federal Reserve Bank of Boston.
  31. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, December.
  32. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
  33. Kauermann G. & Carroll R.J., 2001. "A Note on the Efficiency of Sandwich Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1387-1396, December.
  34. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
  35. repec:dau:papers:123456789/4392 is not listed on IDEAS
  36. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
  37. Stock, James H. & Watson, Mark, 2008. "Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression," Scholarly Articles 28461843, Harvard University Department of Economics.
  38. Davis, Peter, 2002. "Estimating multi-way error components models with unbalanced data structures," Journal of Econometrics, Elsevier, vol. 106(1), pages 67-95, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cda:wpaper:10-6. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Scott Dyer)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.