IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2005.04089.html
   My bibliography  Save this paper

How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?

Author

Listed:
  • Benedikt M. Potscher
  • David Preinerstorfer

Abstract

We develop theoretical finite-sample results concerning the size of wild bootstrap-based heteroskedasticity robust tests in linear regression models. In particular, these results provide an efficient diagnostic check, which can be used to weed out tests that are unreliable for a given testing problem in the sense that they overreject substantially. This allows us to assess the reliability of a large variety of wild bootstrap-based tests in an extensive numerical study.

Suggested Citation

  • Benedikt M. Potscher & David Preinerstorfer, 2020. "How Reliable are Bootstrap-based Heteroskedasticity Robust Tests?," Papers 2005.04089, arXiv.org.
  • Handle: RePEc:arx:papers:2005.04089
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2005.04089
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chesher, Andrew, 1989. "Hajek Inequalities, Measures of Leverage and the Size of Heteroskedasticity Robust Wald Tests," Econometrica, Econometric Society, vol. 57(4), pages 971-977, July.
    2. Godfrey, Leslie G. & Orme, Chris D., 2004. "Controlling the finite sample significance levels of heteroskedasticity-robust tests of several linear restrictions on regression coefficients," Economics Letters, Elsevier, vol. 82(2), pages 281-287, February.
    3. Guido W. Imbens & Michal Kolesár, 2016. "Robust Standard Errors in Small Samples: Some Practical Advice," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
    4. Bates, Douglas & Eddelbuettel, Dirk, 2013. "Fast and Elegant Numerical Linear Algebra Using the RcppEigen Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i05).
    5. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    6. Emmanuel Flachaire, 2005. "More Efficient Tests Robust to Heteroskedasticity of Unknown Form," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 219-241.
    7. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    8. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    9. DAVIDSON, Russel & MACKINNON, James G., 1985. "Heteroskedastcity-robust tests in regressions directions," LIDAM Reprints CORE 678, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
    11. Flachaire, Emmanuel, 1999. "A better way to bootstrap pairs," Economics Letters, Elsevier, vol. 64(3), pages 257-262, September.
    12. Richard, Patrick, 2017. "Robust heteroskedasticity-robust tests," Economics Letters, Elsevier, vol. 159(C), pages 28-32.
    13. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    14. Chesher, Andrew & Austin, Gerard, 1991. "The finite-sample distributions of heteroskedasticity robust Wald statistics," Journal of Econometrics, Elsevier, vol. 47(1), pages 153-173, January.
    15. Flachaire, Emmanuel, 2005. "Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 361-376, April.
    16. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    17. Chesher, Andrew & Jewitt, Ian, 1987. "The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 55(5), pages 1217-1222, September.
    18. Cragg, John G., 1992. "Quasi-Aitken estimation for heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 179-201.
    19. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
    20. van Giersbergen, Noud P. A. & Kiviet, Jan F., 2002. "How to implement the bootstrap in static or stable dynamic regression models: test statistic versus confidence region approach," Journal of Econometrics, Elsevier, vol. 108(1), pages 133-156, May.
    21. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    22. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    23. Eric S. Lin & Ta-Sheng Chou, 2018. "Finite-sample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 1-28, January.
    24. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.
    25. DiCiccio, Cyrus J. & Romano, Joseph P. & Wolf, Michael, 2019. "Improving weighted least squares inference," Econometrics and Statistics, Elsevier, vol. 10(C), pages 96-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Flachaire, 2005. "More Efficient Tests Robust to Heteroskedasticity of Unknown Form," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 219-241.
    2. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    3. Eric S. Lin & Ta-Sheng Chou, 2018. "Finite-sample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 1-28, January.
    4. Torben Klarl, 2014. "Is Spatial Bootstrapping A Panacea For Valid Inference?," Journal of Regional Science, Wiley Blackwell, vol. 54(2), pages 304-312, March.
    5. Cyrus J. DiCiccio & Joseph P. Romano & Michael Wolf, 2016. "Improving weighted least squares inference," ECON - Working Papers 232, Department of Economics - University of Zurich, revised Nov 2017.
    6. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    7. Flachaire, Emmanuel, 2005. "Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 361-376, April.
    8. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.
    9. DiCiccio, Cyrus J. & Romano, Joseph P. & Wolf, Michael, 2019. "Improving weighted least squares inference," Econometrics and Statistics, Elsevier, vol. 10(C), pages 96-119.
    10. Jianghao Chu & Tae-Hwy Lee & Aman Ullah & Haifeng Xu, 2020. "Exact Distribution of the F-statistic under Heteroskedasticity of Unknown Form for Improved Inference," Working Papers 202027, University of California at Riverside, Department of Economics.
    11. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    12. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    13. Michael O'Hara & Christopher F. Parmeter, 2013. "Nonparametric Generalized Least Squares in Applied Regression Analysis," Pacific Economic Review, Wiley Blackwell, vol. 18(4), pages 456-474, October.
    14. Lamarche, Jean-Francois, 2003. "A robust bootstrap test under heteroskedasticity," Economics Letters, Elsevier, vol. 79(3), pages 353-359, June.
    15. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    16. Emmanuel Flachaire, 2005. "Propriétés en échantillon fini des tests robustes à l'hétéroscédasticité de forme inconnue," Annals of Economics and Statistics, GENES, issue 77, pages 187-199.
    17. Richard, Patrick, 2017. "Robust heteroskedasticity-robust tests," Economics Letters, Elsevier, vol. 159(C), pages 28-32.
    18. José Curto & José Pinto & Ana Morais & Isabel Lourenço, 2011. "The heteroskedasticity-consistent covariance estimator in accounting," Review of Quantitative Finance and Accounting, Springer, vol. 37(4), pages 427-449, November.
    19. Godfrey, L.G. & Tremayne, A.R., 2005. "The wild bootstrap and heteroskedasticity-robust tests for serial correlation in dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 377-395, April.
    20. Andrea Monticini & David Peel, 2009. "Testing for central bank independence and inflation using the wild bootstrap," Economics Bulletin, AccessEcon, vol. 29(3), pages 1602-1607.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.04089. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.