IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1315.html
   My bibliography  Save this paper

Reworking Wild Bootstrap Based Inference For Clustered Errors

Author

Listed:
  • Matthew D. Webb

    () (Carleton University)

Abstract

Many empirical projects involve estimation with clustered data. While estimation is straightforward, reliable inference can be challenging. Past research has suggested a number of bootstrap procedures when there are few clusters. I demonstrate, using Monte Carlo experiments, that these bootstrap procedures perform poorly with fewer than eleven clusters. With few clusters, the wild cluster bootstrap results in p-values that are not point identified. I suggest two alternative wild bootstrap procedures. Monte Carlo simulations provide evidence that a 6-point bootstrap weight distribution improves the reliability of inference. A brief empirical example concerning education tax credits highlights the implications of these findings.

Suggested Citation

  • Matthew D. Webb, 2014. "Reworking Wild Bootstrap Based Inference For Clustered Errors," Working Paper 1315, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1315
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/qed_wp_1315.pdf
    File Function: First version 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Card, David & Krueger, Alan B, 1994. "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania," American Economic Review, American Economic Association, vol. 84(4), pages 772-793, September.
    2. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    3. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    4. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
    5. Thompson, Samuel B., 2011. "Simple formulas for standard errors that cluster by both firm and time," Journal of Financial Economics, Elsevier, vol. 99(1), pages 1-10, January.
    6. DiNardo, John & Lee, David S., 2011. "Program Evaluation and Research Designs," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 5, pages 463-536, Elsevier.
    7. Nada Eissa & Jeffrey B. Liebman, 1996. "Labor Supply Response to the Earned Income Tax Credit," The Quarterly Journal of Economics, Oxford University Press, vol. 111(2), pages 605-637.
    8. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 107, University of California, Davis, Department of Economics.
    9. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    10. Jonathan Gruber & James M. Poterba, 1993. "Tax Incentives and the Decision to Purchase Health Insurance: Evidence from the Self-Employed," NBER Working Papers 4435, National Bureau of Economic Research, Inc.
    11. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    12. Meyer, Bruce D, 1995. "Natural and Quasi-experiments in Economics," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 151-161, April.
    13. Kloek, T, 1981. "OLS Estimation in a Model Where a Microvariable Is Explained by Aggregates and Contemporaneous Disturbances Are Equicorrelated," Econometrica, Econometric Society, vol. 49(1), pages 205-207, January.
    14. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," Review of Economic Studies, Oxford University Press, vol. 72(1), pages 1-19.
    15. William Rogers, 1994. "Regression standard errors in clustered samples," Stata Technical Bulletin, StataCorp LP, vol. 3(13).
    16. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    17. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    18. Jonathan Gruber & James Poterba, 1994. "Tax Incentives and the Decision to Purchase Health Insurance: Evidence from the Self-Employed," The Quarterly Journal of Economics, Oxford University Press, vol. 109(3), pages 701-733.
    19. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    20. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Cluster-Robust Inference: A Guide to Empirical Practice," Working Paper 1456, Economics Department, Queen's University.
    2. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    3. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    4. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    5. Vikström, Johan, 2009. "Cluster sample inference using sensitivity analysis: the case with few groups," Working Paper Series 2009:15, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    6. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    7. Ivan A. Canay & Andres Santos & Azeem M. Shaikh, 2018. "The wild bootstrap with a "small" number of "large" clusters," CeMMAP working papers CWP27/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Pfaff, Tobias & Hirata, Johannes, 2013. "Testing the Easterlin hypothesis with panel data: The dynamic relationship between life satisfaction and economic growth in Germany and in the UK," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79965, Verein für Socialpolitik / German Economic Association.
    9. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    10. Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org.
    11. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
    12. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    13. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    14. Bruno Ferman & Cristine Pinto, 2019. "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 452-467, July.
    15. Tobias Pfaff & Johannes Hirata, 2013. "Testing the Easterlin Hypothesis with Panel Data: The Dynamic Relationship between Life Satisfaction and Economic Growth in Germany and the UK," SOEPpapers on Multidisciplinary Panel Data Research 554, DIW Berlin, The German Socio-Economic Panel (SOEP).
    16. Pfaff, Tobias & Hirata, Johannes, 2013. "Testing the Easterlin hypothesis with panel data: The dynamic relationship between life satisfaction and economic growth in Germany and in the UK," CIW Discussion Papers 4/2013, University of Münster, Center for Interdisciplinary Economics (CIW).
    17. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    18. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    19. Susan Athey & Guido Imbens, 2018. "Design-based Analysis in Difference-In-Differences Settings with Staggered Adoption," Papers 1808.05293, arXiv.org, revised Sep 2018.
    20. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.

    More about this item

    Keywords

    CRVE; grouped data; clustered data; panel data; wild bootstrap; wild cluster bootstrap; difference in differences; placebo laws;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1315. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.