IDEAS home Printed from
   My bibliography  Save this article

Randomization Tests Under an Approximate Symmetry Assumption


  • Ivan A. Canay
  • Joseph P. Romano
  • Azeem M. Shaikh


This paper develops a theory of randomization tests under an approximate symmetry assumption. Randomization tests provide a general means of constructing tests that control size in finite samples whenever the distribution of the observed data exhibits symmetry under the null hypothesis. Here, by exhibits symmetry we mean that the distribution remains invariant under a group of transformations. In this paper, we provide conditions under which the same construction can be used to construct tests that asymptotically control the probability of a false rejection whenever the distribution of the observed data exhibits approximate symmetry in the sense that the limiting distribution of a function of the data exhibits symmetry under the null hypothesis. An important application of this idea is in settings where the data may be grouped into a fixed number of “clusters” with a large number of observations within each cluster. In such settings, we show that the distribution of the observed data satisfies our approximate symmetry requirement under weak assumptions. In particular, our results allow for the clusters to be heterogeneous and also have dependence not only within each cluster, but also across clusters. This approach enjoys several advantages over other approaches in these settings.

Suggested Citation

  • Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
  • Handle: RePEc:wly:emetrp:v:85:y:2017:i::p:1013-1030

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:85:y:2017:i::p:1013-1030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.