IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/201802.html
   My bibliography  Save this paper

Synthetic Control and Inference

Author

Listed:
  • Ruoyao Shi

    () (Department of Economics, University of California Riverside)

  • Jinyong Hahn

    () (UCLA Economics)

Abstract

We examine properties of permutation tests in the context of synthetic control. Permutation tests are frequently used methods of inference for synthetic control when the number of potential control units is small. We analyze the permutation tests from a repeated sampling perspective and show that the size of permutation tests may be distorted. Several alternative methods are discussed.

Suggested Citation

  • Ruoyao Shi & Jinyong Hahn, 2016. "Synthetic Control and Inference," Working Papers 201802, University of California at Riverside, Department of Economics, revised Nov 2017.
  • Handle: RePEc:ucr:wpaper:201802
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/201802.pdf
    File Function: First version, 2016
    Download Restriction: no

    File URL: http://economics.ucr.edu/repec/ucr/wpaper/201802R.pdf
    File Function: Revised version, 2017
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. W. K. Andrews, 2003. "End-of-Sample Instability Tests," Econometrica, Econometric Society, vol. 71(6), pages 1661-1694, November.
    2. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    3. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
    4. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    5. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    6. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    7. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, Oxford University Press, vol. 119(1), pages 249-275.
    8. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    9. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    10. Ferman, Bruno & Pinto, Cristine Campos de Xavier, 2016. "Revisiting the synthetic control estimator," Textos para discussão 421, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    11. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    12. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    2. Yi‐Ting Chen, 2020. "A distributional synthetic control method for policy evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 505-525, August.
    3. Benjamin Born & Gernot J. Müller & Moritz Schularick & Petr Sedlacek, 2017. "The Economic Consequences of the Brexit Vote," Discussion Papers 1738, Centre for Macroeconomics (CFM).
    4. Gaughan, James & Gutacker, Nils & Grašič, Katja & Kreif, Noemi & Siciliani, Luigi & Street, Andrew, 2019. "Paying for efficiency: Incentivising same-day discharges in the English NHS," Journal of Health Economics, Elsevier, vol. 68(C).
    5. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2019. "Synthetic Difference in Differences," Working Papers wp2019_1907, CEMFI.
    6. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org.
    7. Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
    8. Cordeiro Guerra, Susana & Lastra-Anadón, Carlos Xabel, 2019. "The quality-access tradeoff in decentralizing public services: Evidence from education in the OECD and Spain," Journal of Comparative Economics, Elsevier, vol. 47(2), pages 295-316.
    9. Fredriksen, Kaja & Runst, Petrik, 2018. "Are estimates of the "natural experiment" in the German crafts sector causal?," ifh Working Papers 16/2018, Volkswirtschaftliches Institut für Mittelstand und Handwerk an der Universität Göttingen (ifh).
    10. Eli Ben-Michael & Avi Feller & Jesse Rothstein, 2018. "The Augmented Synthetic Control Method," Papers 1811.04170, arXiv.org, revised Jul 2020.
    11. Funke, Manuel & Schularick, Moritz & Trebesch, Christoph, 2020. "Populist leaders and the economy," Kiel Working Papers 2169, Kiel Institute for the World Economy (IfW).
    12. Jianfei Cao & Connor Dowd, 2019. "Estimation and Inference for Synthetic Control Methods with Spillover Effects," Papers 1902.07343, arXiv.org, revised Nov 2019.
    13. Born, Benjamin & Müller, Gernot & Schularick, Moritz & Sedlacek, Petr, 2019. "Stable genius? The macroeconomic impact of Trump," CEPR Discussion Papers 13798, C.E.P.R. Discussion Papers.
    14. Peri, Giovanni & Rury, Derek & Wiltshire, Justin C., 2020. "The Economic Impact of Migrants from Hurricane Maria," IZA Discussion Papers 13049, Institute of Labor Economics (IZA).
    15. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    16. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2020. "Populist Leaders and the Economy," ECONtribute Discussion Papers Series 036, University of Bonn and University of Cologne, Germany.
    17. Ferman, Bruno & Pinto, Cristine, 2017. "Placebo Tests for Synthetic Controls," MPRA Paper 78079, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2017. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Papers 1712.09089, arXiv.org, revised Sep 2020.
    2. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    3. Susan Athey & Mohsen Bayati & Nikolay Doudchenko & Guido Imbens & Khashayar Khosravi, 2017. "Matrix Completion Methods for Causal Panel Data Models," Papers 1710.10251, arXiv.org, revised Jun 2020.
    4. Ferman, Bruno, 2017. "Matching Estimators with Few Treated and Many Control Observations," MPRA Paper 78940, University Library of Munich, Germany.
    5. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    6. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2019. "Inference on average treatment effects in aggregate panel data settings," CeMMAP working papers CWP32/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "Practical and robust $t$-test based inference for synthetic control and related methods," Papers 1812.10820, arXiv.org, revised Mar 2020.
    8. repec:fgv:eesptd:411 is not listed on IDEAS
    9. Raffaello Bronzini & Sauro Mocetti & Matteo Mongardini, 2020. "The economic effects of big events: Evidence from the great jubilee 2000 in Rome," Journal of Regional Science, Wiley Blackwell, vol. 60(4), pages 801-822, September.
    10. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    11. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org.
    12. Giulio Grossi & Patrizia Lattarulo & Marco Mariani & Alessandra Mattei & Ozge Oner, 2020. "Synthetic Control Group Methods in the Presence of Interference: The Direct and Spillover Effects of Light Rail on Neighborhood Retail Activity," Papers 2004.05027, arXiv.org, revised Jun 2020.
    13. Bluszcz, Julia & Valente, Marica, 2020. "The Economic Costs of Hybrid Wars: The Case of Ukraine," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 1-25.
    14. Gobillon, Laurent & Wolff, François-Charles, 2020. "The local effects of an innovation: Evidence from the French fish market," Ecological Economics, Elsevier, vol. 171(C).
    15. Yana Petrova & Joakim Westerlund, 2020. "Fixed effects demeaning in the presence of interactive effects in treatment effects regressions and elsewhere," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 960-964, November.
    16. Bruno Ferman, 2019. "On the Properties of the Synthetic Control Estimator with Many Periods and Many Controls," Papers 1906.06665, arXiv.org, revised May 2020.
    17. Kaul, Ashok & Klößner, Stefan & Pfeifer, Gregor & Schieler, Manuel, 2015. "Synthetic Control Methods: Never Use All Pre-Intervention Outcomes Together With Covariates," MPRA Paper 83790, University Library of Munich, Germany.
    18. Ekaterina Jardim & Mark C. Long & Robert Plotnick & Emma van Inwegen & Jacob Vigdor & Hilary Wething, 2017. "Minimum Wage Increases, Wages, and Low-Wage Employment: Evidence from Seattle," NBER Working Papers 23532, National Bureau of Economic Research, Inc.
    19. Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
    20. Chan, Mark K. & Kwok, Simon, 2020. "The PCDID Approach: Difference-in-Differences when Trends are Potentially Unparallel and Stochastic," Working Papers 2020-03, University of Sydney, School of Economics.
    21. Osikominu, Aderonke & Pfeifer, Gregor & Strohmaier, Kristina, 2021. "The Effects of Free Secondary School Track Choice: A Disaggregated Synthetic Control Approach," IZA Discussion Papers 14033, Institute of Labor Economics (IZA).

    More about this item

    Keywords

    synthetic control; permutation test; symmetry;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:201802. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kelvin Mac). General contact details of provider: http://edirc.repec.org/data/deucrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.