IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/14-19.html
   My bibliography  Save this paper

Nuclear norm regularized estimation of panel regression models

Author

Listed:
  • Hyungsik Roger Moon

    (Institute for Fiscal Studies and USC)

  • Martin Weidner

    (Institute for Fiscal Studies and University College London)

Abstract

In this paper we investigate panel regression models with interactive fixed effects. We propose two new estimation methods that are based on minimizing convex objective functions. The fi rst method minimizes the sum of squared residuals with a nuclear (trace) norm regularization. The second method minimizes the nuclear norm of the residuals. We establish the consistency of the two resulting estimators. Those estimators have a very important computational advantage compared to the existing least squares (LS) estimator, in that they are de fined as minimizers of a convex objective function. In addition, the nuclear norm penalization helps to resolve a potential identifi cation problem for interactive fixed effect models, in particular when the regressors are low-rank and the number of the factors is unknown. We also show how to construct estimators that are asymptotically equivalent to the least squares (LS) estimator in Bai (2009) and Moon and Weidner (2017) by using our nuclear norm regularized or minimized estimators as initial values for a nite number of LS minimizing iteration steps. This iteration avoids any non-convex minimization, while the original LS estimation problem is generally non-convex, and can have multiple local minima.

Suggested Citation

  • Hyungsik Roger Moon & Martin Weidner, 2019. "Nuclear norm regularized estimation of panel regression models," CeMMAP working papers CWP14/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:14/19
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/cemmap/wps/CWP141919.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    2. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    5. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    6. Liangjun Su & Yonghui Zhang, 2016. "Semiparametric Estimation of Partially Linear Dynamic Panel Data Models with Fixed Effects," Advances in Econometrics, in: Essays in Honor of Aman Ullah, volume 36, pages 137-204, Emerald Group Publishing Limited.
    7. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    8. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    9. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
    10. Gobillon, Laurent & Wolff, François-Charles, 2020. "The local effects of an innovation: Evidence from the French fish market," Ecological Economics, Elsevier, vol. 171(C).
    11. Chen, Mingli, 2016. "Estimation of Nonlinear Panel Models with Multiple Unobserved Effects," The Warwick Economics Research Paper Series (TWERPS) 1120, University of Warwick, Department of Economics.
    12. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    13. Chan, Mark K. & Kwok, Simon, 2016. "Policy Evaluation with Interactive Fixed Effects," Working Papers 2016-11, University of Sydney, School of Economics.
    14. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    15. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    16. Piracha, Matloob & Tani, Massimiliano & Tchuente, Guy, 2017. "Immigration Policy and Remittance Behaviour," GLO Discussion Paper Series 94, Global Labor Organization (GLO).
    17. Gary Chamberlain & Marcelo J. Moreira, 2009. "Decision Theory Applied to a Linear Panel Data Model," Econometrica, Econometric Society, vol. 77(1), pages 107-133, January.
    18. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    19. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    20. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    21. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    22. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    2. Norkutė, Milda & Sarafidis, Vasilis & Yamagata, Takashi & Cui, Guowei, 2021. "Instrumental variable estimation of dynamic linear panel data models with defactored regressors and a multifactor error structure," Journal of Econometrics, Elsevier, vol. 220(2), pages 416-446.
    3. Miao, Ke & Phillips, Peter C.B. & Su, Liangjun, 2023. "High-dimensional VARs with common factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 155-183.
    4. Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Cambridge Working Papers in Economics 2242, Faculty of Economics, University of Cambridge.
    5. Claudia Pigini & Alessandro Pionati & Francesco Valentini, 2023. "Specification testing with grouped fixed effects," Papers 2310.01950, arXiv.org.
    6. Alexandre Belloni & Mingli Chen & Oscar Hernan Madrid Padilla & Zixuan & Wang, 2019. "High Dimensional Latent Panel Quantile Regression with an Application to Asset Pricing," Papers 1912.02151, arXiv.org, revised Aug 2022.
    7. Luca Margaritella & Joakim Westerlund, 2023. "Using information criteria to select averages in CCE," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 405-421.
    8. Martin Mugnier, 2022. "A Simple and Computationally Trivial Estimator for Grouped Fixed Effects Models," Papers 2203.08879, arXiv.org, revised Sep 2024.
    9. Denis Chetverikov & Elena Manresa, 2022. "Spectral and post-spectral estimators for grouped panel data models," Papers 2212.13324, arXiv.org, revised Dec 2022.
    10. Vogt, M. & Walsh, C. & Linton, O., 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Janeway Institute Working Papers 2218, Faculty of Economics, University of Cambridge.
    11. Junlong Feng, 2019. "Regularized Quantile Regression with Interactive Fixed Effects," Papers 1911.00166, arXiv.org, revised Mar 2021.
    12. Michael Vogt & Christopher Walsh & Oliver Linton, 2022. "CCE Estimation of High-Dimensional Panel Data Models with Interactive Fixed Effects," Papers 2206.12152, arXiv.org.
    13. Martin Mugnier, 2022. "Make the Difference! computationally Trivial Estimators for Grouped Fixed Effects Models," Working Papers 2022-07, Center for Research in Economics and Statistics.
    14. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Li, Kunpeng & Li, Qi & Ouyang, Min, 2021. "Revisiting the location of FDI in China: A panel data approach with heterogeneous shocks," Journal of Econometrics, Elsevier, vol. 221(2), pages 483-509.
    2. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    3. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    4. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    5. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    6. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A semiparametric approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Mar 2023.
    7. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
    9. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    10. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    11. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    12. Hyungsik Roger Moon & Matthew Shum & Martin Weidner, 2017. "Estimation of random coefficients logit demand models with interactive fixed effects," CeMMAP working papers 12/17, Institute for Fiscal Studies.
    13. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    14. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
    15. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    16. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    17. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    18. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    19. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    20. Ayden Higgins & Federico Martellosio, 2019. "Shrinkage Estimation of Network Spillovers with Factor Structured Errors," Papers 1909.02823, arXiv.org, revised Nov 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:14/19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.