IDEAS home Printed from https://ideas.repec.org/p/rio/texdis/653.html
   My bibliography  Save this paper

ARCO: an artificial counterfactual approach for high-dimensional panel time-series data

Author

Listed:
  • Carlos Viana de Carvalho

    (Department of Economics, PUC-Rio)

  • Ricardo Masini

    (São Paulo School of Economics, Getúlio Vargas Foundation)

  • Marcelo Cunha Medeiros

    (Department of Economics, PUC-Rio)

Abstract

We consider a new method to estimate causal effects when a treated unit suffers a shock or an intervention, such as a policy change, but there is not a readily available control group or counterfactual. We propose a two-step approach where in the first stage an artificial counterfactual is estimated from a large-dimensional set of variables from pool of untreated units (“donors pool”) using shrinkage methods, such as the Least Absolute Shrinkage Operator (LASSO). In the second stage, we estimate the average intervention effect on a vector of variables belonging to the treated unit, which is consistent and asymptotically normal. Our results are valid uniformly over a wide class of probability laws. Furthermore, we show that these results still hold when the date of the intervention is unknown and must be estimated from the data. Tests for multiple interventions and for contamination effects are also derived. By a simple transformation of the variables of interest, it is also possible to test for intervention effects on several moments (such as the mean or the variance) of the variables of interest. Finally, we can disentangle the actual intervention effects from confounding factors that usually bias “before-and-after” estimators. A detailed Monte Carlo experiment evaluates the properties of the method in finite samples and compares our proposal with other alternatives such as the differences-in-differences, factor models and the synthetic control method. An empirical application to evaluate the effects on inflation of a new anti tax evasion program in Brazil is considered. Our methodology is inspired by different branches of the literature such as: the Synthetic Control method, the Global Vector Autoregressive models, the econometrics of structural breaks, and the counterfactual analysis based on macro-econometric and panel data models.

Suggested Citation

  • Carlos Viana de Carvalho & Ricardo Masini & Marcelo Cunha Medeiros, 2016. "ARCO: an artificial counterfactual approach for high-dimensional panel time-series data," Textos para discussão 653, Department of Economics PUC-Rio (Brazil).
  • Handle: RePEc:rio:texdis:653
    as

    Download full text from publisher

    File URL: http://www.econ.puc-rio.br/uploads/adm/trabalhos/files/td653.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    2. James J. Heckman & Edward Vytlacil, 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation," Econometrica, Econometric Society, vol. 73(3), pages 669-738, May.
    3. Junmin Wan, 2010. "The Incentive to Declare Taxes and Tax Revenue: The Lottery Receipt Experiment in China," Review of Development Economics, Wiley Blackwell, vol. 14(3), pages 611-624, August.
    4. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    5. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
    6. Haiqiang Chen & Qian Han & Yingxing Li & Kai Wu, 2013. "Does Index Futures Trading Reduce Volatility in the Chinese Stock Market? A Panel Data Evaluation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1167-1190, December.
    7. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    8. Alberto Abadie & Javier Gardeazabal, 2003. "The Economic Costs of Conflict: A Case Study of the Basque Country," American Economic Review, American Economic Association, vol. 93(1), pages 113-132, March.
    9. M. Hashem Pesaran & L. Vanessa Smith & Ron P. Smith, 2007. "What if the UK or Sweden had joined the euro in 1999? An empirical evaluation using a Global VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 55-87.
    10. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.
    11. Andreas Billmeier & Tommaso Nannicini, 2013. "Assessing Economic Liberalization Episodes: A Synthetic Control Approach," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 983-1001, July.
    12. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    13. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    14. Hashem Pesaran, M. & Smith, Ron P., 2016. "Counterfactual analysis in macroeconometrics: An empirical investigation into the effects of quantitative easing," Research in Economics, Elsevier, vol. 70(2), pages 262-280.
    15. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    16. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    17. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    18. Bai, ChongEn & Li, Qi & Ouyang, Min, 2014. "Property taxes and home prices: A tale of two cities," Journal of Econometrics, Elsevier, vol. 180(1), pages 1-15.
    19. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    20. Pötscher, Benedikt M. & Leeb, Hannes, 2009. "On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2065-2082, October.
    21. Johnson, Simon & Boone, Peter & Breach, Alasdair & Friedman, Eric, 2000. "Corporate governance in the Asian financial crisis," Journal of Financial Economics, Elsevier, vol. 58(1-2), pages 141-186.
    22. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    23. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    24. Du, Zaichao & Zhang, Lin, 2015. "Home-purchase restriction, property tax and housing price in China: A counterfactual analysis," Journal of Econometrics, Elsevier, vol. 188(2), pages 558-568.
    25. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    26. Du Zaichao & Yin Hua & Zhang Lin, 2013. "The macroeconomic effects of the 35-h workweek regulation in France," The B.E. Journal of Macroeconomics, De Gruyter, vol. 13(1), pages 881-901, June.
    27. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    28. Fujiki, Hiroshi & Hsiao, Cheng, 2015. "Disentangling the effects of multiple treatments—Measuring the net economic impact of the 1995 great Hanshin-Awaji earthquake," Journal of Econometrics, Elsevier, vol. 186(1), pages 66-73.
    29. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    30. Eduardo Cavallo & Sebastian Galiani & Ilan Noy & Juan Pantano, 2013. "Catastrophic Natural Disasters and Economic Growth," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1549-1561, December.
    31. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    32. Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
    33. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    34. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    35. Brockmann, Hilke & Genschel, Philipp & Seelkopf, Laura, 2016. "Happy taxation: increasing tax compliance through positive rewards?," Journal of Public Policy, Cambridge University Press, vol. 36(3), pages 381-406, September.
    36. Ferman, Bruno & Pinto, Cristine Campos de Xavier, 2016. "Revisiting the synthetic control estimator," Textos para discussão 421, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
    37. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    38. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    39. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    40. Bruno Ferman & Cristine Pinto, 2019. "Inference in Differences-in-Differences with Few Treated Groups and Heteroskedasticity," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 452-467, July.
    41. Joshua D. Angrist & Òscar Jordà & Guido M. Kuersteiner, 2018. "Semiparametric Estimates of Monetary Policy Effects: String Theory Revisited," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 371-387, July.
    42. Timothy G. Conley & Christopher R. Taber, 2011. "Inference with "Difference in Differences" with a Small Number of Policy Changes," The Review of Economics and Statistics, MIT Press, vol. 93(1), pages 113-125, February.
    43. Ariel R. Belasen & Solomon W. Polachek, 2008. "How Hurricanes Affect Wages and Employment in Local Labor Markets," American Economic Review, American Economic Association, vol. 98(2), pages 49-53, May.
    44. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2014. "Sticky prices or economically-linked economies: The case of forecasting the Chinese stock market," Journal of International Money and Finance, Elsevier, vol. 41(C), pages 95-109.
    45. Caruso, Germán & Miller, Sebastian, 2015. "Long run effects and intergenerational transmission of natural disasters: A case study on the 1970 Ancash Earthquake," Journal of Development Economics, Elsevier, vol. 117(C), pages 134-150.
    46. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    47. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    48. Ouyang, Min & Peng, Yulei, 2015. "The treatment-effect estimation: A case study of the 2008 economic stimulus package of China," Journal of Econometrics, Elsevier, vol. 188(2), pages 545-557.
    49. repec:wyi:journl:002169 is not listed on IDEAS
    50. Fatas, Enrique & Nosenzo, Daniele & Sefton, Martin & Zizzo, Daniel John, 2021. "A self-funding reward mechanism for tax compliance," Journal of Economic Psychology, Elsevier, vol. 86(C).
    51. Belasen, Ariel R. & Polachek, Solomon, 2008. "How Hurricanes Affect Employment and Wages in Local Labor Markets," IZA Discussion Papers 3407, Institute of Labor Economics (IZA).
    52. Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
    53. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    54. Niemi, Hannu, 1979. "On the construction of Wold decomposition for multivariate stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 9(4), pages 545-559, December.
    55. repec:bla:rdevec:v:14:y:2010:i:s1:p:611-624 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos Viana de Carvalho & Ricardo Masini & Marcelo Cunha Medeiros, 2016. "The perils of Counterfactual Analysis with Integrated Processes," Textos para discussão 654, Department of Economics PUC-Rio (Brazil).
    2. Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
    3. Viviano, Davide & Bradic, Jelena, 2023. "Synthetic Learner: Model-free inference on treatments over time," Journal of Econometrics, Elsevier, vol. 234(2), pages 691-713.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Irene Botosaru & Bruno Ferman, 2019. "On the role of covariates in the synthetic control method," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 117-130.
    6. Kaul, Ashok & Klößner, Stefan & Pfeifer, Gregor & Schieler, Manuel, 2015. "Synthetic Control Methods: Never Use All Pre-Intervention Outcomes Together With Covariates," MPRA Paper 83790, University Library of Munich, Germany.
    7. Ferman, Bruno & Pinto, Cristine, 2016. "Revisiting the Synthetic Control Estimator," MPRA Paper 73982, University Library of Munich, Germany.
    8. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    9. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    10. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    11. Jianqing Fan & Ricardo Masini & Marcelo C. Medeiros, 2022. "Do We Exploit all Information for Counterfactual Analysis? Benefits of Factor Models and Idiosyncratic Correction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 574-590, April.
    12. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    13. Daniel Albalate & Germà Bel & Ferran A. Mazaira-Font, 2021. "Decoupling synthetic control methods to ensure stability, accuracy and meaningfulness," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 549-584, December.
    14. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    15. Zhentao Shi & Jingyi Huang, 2019. "Forward-Selected Panel Data Approach for Program Evaluation," Papers 1908.05894, arXiv.org, revised Apr 2021.
    16. Hongjun Li & Zheng Li & Cheng Hsiao, 2023. "Assessing the impacts of pandemic and the increase in minimum down payment rate on Shanghai housing prices," Empirical Economics, Springer, vol. 64(6), pages 2661-2682, June.
    17. Echevarría, Cruz A. & Hasancebi, Serhat & García-Enríquez, Javier, 2022. "Economic Effects of Macao’s Integration with Mainland China: A Causal Inference Study," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 37(2), pages 179-215.
    18. Fujiki, Hiroshi & Hsiao, Cheng, 2015. "Disentangling the effects of multiple treatments—Measuring the net economic impact of the 1995 great Hanshin-Awaji earthquake," Journal of Econometrics, Elsevier, vol. 186(1), pages 66-73.
    19. Cummins Joseph & Miller Douglas L. & Smith Brock & Simon David, 2024. "Matching on Noise: Finite Sample Bias in the Synthetic Control Estimator," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 67-95, January.
    20. Jinyong Hahn & Ruoyao Shi, 2017. "Synthetic Control and Inference," Econometrics, MDPI, vol. 5(4), pages 1-12, November.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rio:texdis:653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dpucrbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.