IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2505.22388.html
   My bibliography  Save this paper

A Synthetic Business Cycle Approach to Counterfactual Analysis with Nonstationary Macroeconomic Data

Author

Listed:
  • Zhentao Shi
  • Jin Xi
  • Haitian Xie

Abstract

This paper investigates the use of synthetic control methods for causal inference in macroeconomic settings when dealing with possibly nonstationary data. While the synthetic control approach has gained popularity for estimating counterfactual outcomes, we caution researchers against assuming a common nonstationary trend factor across units for macroeconomic outcomes, as doing so may result in misleading causal estimation-a pitfall we refer to as the spurious synthetic control problem. To address this issue, we propose a synthetic business cycle framework that explicitly separates trend and cyclical components. By leveraging the treated unit's historical data to forecast its trend and using control units only for cyclical fluctuations, our divide-and-conquer strategy eliminates spurious correlations and improves the robustness of counterfactual prediction in macroeconomic applications. As empirical illustrations, we examine the cases of German reunification and the handover of Hong Kong, demonstrating the advantages of the proposed approach.

Suggested Citation

  • Zhentao Shi & Jin Xi & Haitian Xie, 2025. "A Synthetic Business Cycle Approach to Counterfactual Analysis with Nonstationary Macroeconomic Data," Papers 2505.22388, arXiv.org.
  • Handle: RePEc:arx:papers:2505.22388
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2505.22388
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2505.22388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.