Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Jushan Bai & Serena Ng, 2021. "Matrix Completion, Counterfactuals, and Factor Analysis of Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1746-1763, October.
References listed on IDEAS
- Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008.
"Nowcasting: The real-time informational content of macroeconomic data,"
Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005. "Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases," CEPR Discussion Papers 5178, C.E.P.R. Discussion Papers.
- Laurent Gobillon & Thierry Magnac, 2016.
"Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls,"
The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," IDEI Working Papers 786, Institut d'Économie Industrielle (IDEI), Toulouse.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation:Interactive Fixed Effects and Synthetic Controls," TSE Working Papers 13-419, Toulouse School of Economics (TSE).
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE-Ecole d'économie de Paris (Postprint) halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Control," CESifo Working Paper Series 5077, CESifo.
- Gobillon, Laurent & Magnac, Thierry, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," IZA Discussion Papers 7493, Institute of Labor Economics (IZA).
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Working Papers halshs-00849071, HAL.
- Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," Post-Print halshs-01509743, HAL.
- Laurent Gobillon & Thierry Magnac, 2013. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," PSE Working Papers halshs-00849071, HAL.
- Magnac, Thierry & Gobillon, Laurent, 2014. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," CEPR Discussion Papers 10253, C.E.P.R. Discussion Papers.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Horton, Nicholas J. & Kleinman, Ken P., 2007. "Much Ado About Nothing: A Comparison of Missing Data Methods and Software to Fit Incomplete Data Regression Models," The American Statistician, American Statistical Association, vol. 61, pages 79-90, February.
- Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
- J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
- Jungbacker, B. & Koopman, S.J. & van der Wel, M., 2011.
"Maximum likelihood estimation for dynamic factor models with missing data,"
Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1358-1368, August.
- B. Jungbacker & S.J. Koopman & M. van Der Wel, 2011. "Maximum likelihood estimation for dynamic factor models with missing data," Post-Print hal-00828980, HAL.
- R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
- Cheng Hsiao & H. Steve Ching & Shui Ki Wan, 2012. "A Panel Data Approach For Program Evaluation: Measuring The Benefits Of Political And Economic Integration Of Hong Kong With Mainland China," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 705-740, August.
- Marta Bańbura & Michele Modugno, 2014.
"Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
- Bańbura, Marta & Modugno, Michele, 2010. "Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data," Working Paper Series 1189, European Central Bank.
- Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
- Jin, Sainan & Miao, Ke & Su, Liangjun, 2021.
"On factor models with random missing: EM estimation, inference, and cross validation,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
- Su, Liangjun & Miao, Ke & Jin, Sainan, 2019. "On Factor Models with Random Missing: EM Estimation, Inference, and Cross Validation," Economics and Statistics Working Papers 4-2019, Singapore Management University, School of Economics.
- Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
- Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
- Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Reichlin, Lucrezia & Giannone, Domenico & Small, David, 2005.
"Nowcasting GDP and Inflation: The Real Time Informational Content of Macroeconomic Data Releases,"
CEPR Discussion Papers
5178, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Reichlin, Lucrezia & Small, David H., 2006. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Working Paper Series 633, European Central Bank.
- Domenico Giannone & Lucrezia Reichlin & David H. Small, 2005. "Nowcasting GDP and inflation: the real-time informational content of macroeconomic data releases," Finance and Economics Discussion Series 2005-42, Board of Governors of the Federal Reserve System (U.S.).
- Domenico Giannone & Lucrezia Reichlin & David H Small, 2007. "Nowcasting GDP and Inflation: The Real-Time Informational Content of Macroeconomic Data Releases," Money Macro and Finance (MMF) Research Group Conference 2006 164, Money Macro and Finance Research Group.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- James Honaker & Gary King, 2010. "What to Do about Missing Values in Time‐Series Cross‐Section Data," American Journal of Political Science, John Wiley & Sons, vol. 54(2), pages 561-581, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiong, Ruoxuan & Pelger, Markus, 2023.
"Large dimensional latent factor modeling with missing observations and applications to causal inference,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
- Ruoxuan Xiong & Markus Pelger, 2019. "Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference," Papers 1910.08273, arXiv.org, revised Jan 2022.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
- Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023.
"Factor-based imputation of missing values and covariances in panel data of large dimensions,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
- Ercument Cahan & Jushan Bai & Serena Ng, 2021. "Factor-Based Imputation of Missing Values and Covariances in Panel Data of Large Dimensions," Papers 2103.03045, arXiv.org, revised Feb 2022.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Kaufmann, Daniel & Scheufele, Rolf, 2017.
"Business tendency surveys and macroeconomic fluctuations,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 878-893.
- Daniel Kaufmann & Rolf Scheufele, 2015. "Business tendency surveys and macroeconomic fluctuations," KOF Working papers 15-378, KOF Swiss Economic Institute, ETH Zurich.
- Jin, Sainan & Miao, Ke & Su, Liangjun, 2021.
"On factor models with random missing: EM estimation, inference, and cross validation,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
- Su, Liangjun & Miao, Ke & Jin, Sainan, 2019. "On Factor Models with Random Missing: EM Estimation, Inference, and Cross Validation," Economics and Statistics Working Papers 4-2019, Singapore Management University, School of Economics.
- Pilar Poncela & Esther Ruiz, 2016.
"Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434,
Emerald Group Publishing Limited.
- Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Marcellino, Massimiliano & Sivec, Vasja, 2016.
"Monetary, fiscal and oil shocks: Evidence based on mixed frequency structural FAVARs,"
Journal of Econometrics, Elsevier, vol. 193(2), pages 335-348.
- Marcellino, Massimiliano & Sivec, Vasja, 2015. "Monetary, Fiscal and Oil Shocks: Evidence based on Mixed Frequency Structural FAVARs," CEPR Discussion Papers 10610, C.E.P.R. Discussion Papers.
- Monica Defend & Aleksey Min & Lorenzo Portelli & Franz Ramsauer & Francesco Sandrini & Rudi Zagst, 2021. "Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data," Forecasting, MDPI, vol. 3(1), pages 1-35, February.
- Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
- Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
- Jonas Krampe & Luca Margaritella, 2021. "Factor Models with Sparse VAR Idiosyncratic Components," Papers 2112.07149, arXiv.org, revised May 2022.
- Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
- Alvarez, Rocio & Camacho, Maximo & Perez-Quiros, Gabriel, 2016. "Aggregate versus disaggregate information in dynamic factor models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 680-694.
- Modugno, Michele & Soybilgen, Barış & Yazgan, Ege, 2016.
"Nowcasting Turkish GDP and news decomposition,"
International Journal of Forecasting, Elsevier, vol. 32(4), pages 1369-1384.
- Michele Modugno & Bariş Soybilgen & M. Ege Yazgan, 2016. "Nowcasting Turkish GDP and News Decomposition," Finance and Economics Discussion Series 2016-044, Board of Governors of the Federal Reserve System (U.S.).
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2022.
"Measuring real activity using a weekly economic index,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 667-687, June.
- Daniel J. Lewis & Karel Mertens & James H. Stock & Mihir Trivedi, 2020. "Measuring Real Activity Using a Weekly Economic Index," Staff Reports 920, Federal Reserve Bank of New York.
- Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Measuring Real Activity Using a Weekly Economic Index," Working Papers 2011, Federal Reserve Bank of Dallas, revised 02 Mar 2021.
- Bańbura, Marta & Giannone, Domenico & Lenza, Michele, 2015.
"Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 739-756.
- Giannone, Domenico & Bańbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," Working Paper Series 1733, European Central Bank.
- Giannone, Domenico & Banbura, Marta & Lenza, Michele, 2014. "Conditional forecasts and scenario analysis with vector autoregressions for large cross-sections," CEPR Discussion Papers 9931, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Michèle Lenza, 2014. "Conditional Forecasts and Scenario Analysis with Vector Autoregressions for Large Cross-Sections," Working Papers ECARES ECARES 2014-15, ULB -- Universite Libre de Bruxelles.
- Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2018.
"Nowcasting Indonesia,"
Empirical Economics, Springer, vol. 55(2), pages 597-619, September.
- Luciani, Matteo & Pundit, Madhavi & Ramayandi, Arief & Veronese , Giovanni, 2015. "Nowcasting Indonesia," ADB Economics Working Paper Series 471, Asian Development Bank.
- Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2015. "Nowcasting Indonesia," Finance and Economics Discussion Series 2015-100, Board of Governors of the Federal Reserve System (U.S.).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2019-10-21 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1910.06677. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.