IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v250y2025ics0304407625000764.html
   My bibliography  Save this article

Inference for large dimensional factor models under general missing data patterns

Author

Listed:
  • Su, Liangjun
  • Wang, Fa

Abstract

This paper establishes the inferential theory for the least squares estimation of large factor models with missing data. We propose a unified framework for asymptotic analysis of factor models that covers a wide range of missing patterns, including heterogenous random missing, selection on covariates/factors/loadings, block/staggered missing, mixed frequency and ragged edge. We establish the average convergence rates of the estimated factor space and loading space, the limit distributions of the estimated factors and loadings, as well as the limit distributions of the estimated average treatment effects and the parameter estimates in the factor-augmented regressions. These results allow us to impute the unbalanced panel appropriately or make inference for the heterogenous treatment effects. For computation, we can use the nuclear norm regularized estimator as the initial value for the EM algorithm and iterate until convergence. Empirically, we apply our method to test the average treatment effects of partisan alignment on grant allocation in UK.

Suggested Citation

  • Su, Liangjun & Wang, Fa, 2025. "Inference for large dimensional factor models under general missing data patterns," Journal of Econometrics, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:econom:v:250:y:2025:i:c:s0304407625000764
    DOI: 10.1016/j.jeconom.2025.106022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625000764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.106022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Factor models; Missing data; EM algorithm; Least squares; Matrix completion; Nuclear norm; Causal inference; Mixed frequency;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:250:y:2025:i:c:s0304407625000764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.