IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Oaxaca-Blinder unexplained component as a treatment effects estimator

  • Tymon Sloczynski

    ()

    (Warsaw School of Economics)

In this paper I use the National Supported Work (NSW) data to examine the validity of the Oaxaca–Blinder unexplained component as an estimator of the population average treatment effect on the treated (PATT). Precisely, I utilize dataset and variable selections used in previous studies of the NSW data to compare the performance of the Oaxaca–Blinder unexplained component with methods based on the propensity score (Dehejia and Wahba, 1999) and bias-corrected matching estimators (Abadie and Imbens, 2011). I show that in both cases the Oaxaca–Blinder unexplained component performs superior compared to the previously analyzed estimators provided that common support is imposed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://kolegia.sgh.waw.pl/pl/KAE/struktura/IE/struktura/ZES/Documents/Working_Papers/aewp02-12.pdf
Download Restriction: no

Paper provided by Department of Applied Econometrics, Warsaw School of Economics in its series Working Papers with number 61.

as
in new window

Length: 13
Date of creation: 13 Feb 2012
Date of revision:
Handle: RePEc:wse:wpaper:61
Contact details of provider: Postal: 02-513 Warszawa, ul. Madalinskiego 6/8
Phone: + (48)(22) 49 12 51
Fax: + (48)(22) 49 53 12
Web page: http://www.sgh.waw.pl/instytuty/zes
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
  2. Busso, Matias & DiNardo, John & McCrary, Justin, 2009. "New Evidence on the Finite Sample Properties of Propensity Score Matching and Reweighting Estimators," IZA Discussion Papers 3998, Institute for the Study of Labor (IZA).
  3. Dinardo, J. & Fortin, N.M. & Lemieux, T., 1994. "Labor Market Institutions and the Distribution of Wages, 1973-1992: a Semiparametric Approach," Cahiers de recherche 9406, Universite de Montreal, Departement de sciences economiques.
  4. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
  5. Heckman, James J & Ichimura, Hidehiko & Todd, Petra, 1998. "Matching as an Econometric Evaluation Estimator," Review of Economic Studies, Wiley Blackwell, vol. 65(2), pages 261-94, April.
  6. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LP, vol. 4(3), pages 290-311, September.
  7. Rajeev H. Dehejia & Sadek Wahba, 1998. "Propensity Score Matching Methods for Non-experimental Causal Studies," NBER Working Papers 6829, National Bureau of Economic Research, Inc.
  8. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
  9. Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
  10. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2004. "Dealing with Limited Overlap in Estimation of Average Treatment Effects," Working Papers 0716, University of Miami, Department of Economics, revised 12 Jun 2007.
  11. Juhn, Chinhui & Murphy, Kevin M & Pierce, Brooks, 1993. "Wage Inequality and the Rise in Returns to Skill," Journal of Political Economy, University of Chicago Press, vol. 101(3), pages 410-42, June.
  12. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, Elsevier.
  13. Sloczynski, Tymon, 2013. "Population Average Gender Effects," IZA Discussion Papers 7315, Institute for the Study of Labor (IZA).
  14. Barsky R. & Bound J. & Charles K.K. & Lupton J.P., 2002. "Accounting for the Black-White Wealth Gap: A Nonparametric Approach," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 663-673, September.
  15. Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute for the Study of Labor (IZA).
  16. Ahmed Khwaja & Gabriel Picone & Martin Salm & Justin G. Trogdon, 2011. "A comparison of treatment effects estimators using a structural model of AMI treatment choices and severity of illness information from hospital charts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 825-853, 08.
  17. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
  18. Ben Jann, 2008. "The Blinder–Oaxaca decomposition for linear regression models," Stata Journal, StataCorp LP, vol. 8(4), pages 453-479, December.
  19. Jeffrey Smith & Petra Todd, 2003. "Does Matching Overcome Lalonde's Critique of Nonexperimental Estimators?," University of Western Ontario, CIBC Centre for Human Capital and Productivity Working Papers 20035, University of Western Ontario, CIBC Centre for Human Capital and Productivity.
  20. Patrick Kline, 2011. "Oaxaca-Blinder as a Reweighting Estimator," American Economic Review, American Economic Association, vol. 101(3), pages 532-37, May.
  21. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, 01.
  22. Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
  23. Giuseppe Porro & Stefano Maria Iacus, 2009. "Random Recursive Partitioning: a matching method for the estimation of the average treatment effect," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 163-185.
  24. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
  25. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-20, September.
  26. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
  27. Ronald Oaxaca, 1971. "Male-Female Wage Differentials in Urban Labor Markets," Working Papers 396, Princeton University, Department of Economics, Industrial Relations Section..
  28. Deborah A. Cobb-Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
  29. James J. Heckman, 1989. "Choosing Among Alternative Nonexperimental Methods for Estimating the Impact of Social Programs: The Case of Manpower Training," NBER Working Papers 2861, National Bureau of Economic Research, Inc.
  30. Alexis Diamond & Jasjeet S. Sekhon, 2013. "Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 932-945, July.
  31. Arun Advani & Tymon Sloczynski, 2013. "Mostly harmless simulations? On the internal validity of empirical Monte Carlo studies," CeMMAP working papers CWP64/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  32. Dan Black & Amelia Haviland & Seth Sanders & Lowell Taylor, 2006. "Why Do Minority Men Earn Less? A Study of Wage Differentials among the Highly Educated," The Review of Economics and Statistics, MIT Press, vol. 88(2), pages 300-313, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wse:wpaper:61. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marcin Owczarczuk)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.