IDEAS home Printed from https://ideas.repec.org/p/hrv/faseco/3043415.html
   My bibliography  Save this paper

On the Failure of the Bootstrap for Matching Estimators

Author

Listed:
  • Imbens, Guido
  • Abadie, Alberto

Abstract

Matching estimators are widely used in empirical economics for the evaluation of programs or treatments. Researchers using matching methods often apply the bootstrap to calculate the standard errors. However, no formal justification has been provided for the use of the bootstrap in this setting. In this article, we show that the standard bootstrap is, in general, not valid for matching estimators, even in the simple case with a single continuous covariate where the estimator is root-N consistent and asymptotically normally distributed with zero asymptotic bias. Valid inferential methods in this setting are the analytic asymptotic variance estimator of Abadie and Imbens (2006a) as well as certain modifications of the standard bootstrap, like the subsampling methods in Politis and Romano (1994).

Suggested Citation

  • Imbens, Guido & Abadie, Alberto, 2008. "On the Failure of the Bootstrap for Matching Estimators," Scholarly Articles 3043415, Harvard University Department of Economics.
  • Handle: RePEc:hrv:faseco:3043415
    as

    Download full text from publisher

    File URL: http://dash.harvard.edu/bitstream/handle/1/3043415/imbens_bootstrap.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    2. Jalan, Jyotsna & Ravallion, Martin, 1999. "Income gains to the poor from workfare - estimates for Argentina's TRABAJAR Program," Policy Research Working Paper Series 2149, The World Bank.
    3. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    4. Patrick A . Puhani, 2002. "Advantage through Training in Poland? A Microeconometric Evaluation of the Employment Effects of Training and Job Subsidy Programmes," LABOUR, CEIS, vol. 16(3), pages 569-608, September.
    5. Menno Pradhan & Laura B. Rawlings, 2002. "The Impact and Targeting of Social Infrastructure Investments: Lessons from the Nicaraguan Social Fund," World Bank Economic Review, World Bank Group, vol. 16(2), pages 275-295, August.
    6. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    7. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LP, vol. 4(3), pages 290-311, September.
    8. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    9. Roberto Agodini & Mark Dynarski, 2004. "Are Experiments the Only Option? A Look at Dropout Prevention Programs," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 180-194, February.
    10. Whitney K. Newey & Frank Windmeijer, 2005. "GMM with many weak moment conditions," CeMMAP working papers CWP18/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Michael Lechner, 2002. "Some practical issues in the evaluation of heterogeneous labour market programmes by matching methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 165(1), pages 59-82.
    12. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    13. Emanuela Galasso & Martin Ravallion, 2004. "Social Protection in a Crisis: Argentina's Plan Jefes y Jefas," World Bank Economic Review, World Bank Group, vol. 18(3), pages 367-399.
    14. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    15. Sascha O. Becker & Andrea Ichino, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 358-377, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hrv:faseco:3043415. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Office for Scholarly Communication). General contact details of provider: http://edirc.repec.org/data/deharus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.