IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp8049.html
   My bibliography  Save this paper

Matching Methods in Practice: Three Examples

Author

Listed:
  • Imbens, Guido W.

    () (Stanford University)

Abstract

There is a large theoretical literature on methods for estimating causal effects under unconfoundedness, exogeneity, or selection-on-observables type assumptions using matching or propensity score methods. Much of this literature is highly technical and has not made inroads into empirical practice where many researchers continue to use simple methods such as ordinary least squares regression even in settings where those methods do not have attractive properties. In this paper I discuss some of the lessons for practice from the theoretical literature, and provide detailed recommendations on what to do. I illustrate the recommendations with three detailed applications.

Suggested Citation

  • Imbens, Guido W., 2014. "Matching Methods in Practice: Three Examples," IZA Discussion Papers 8049, Institute for the Study of Labor (IZA).
  • Handle: RePEc:iza:izadps:dp8049
    as

    Download full text from publisher

    File URL: http://ftp.iza.org/dp8049.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    2. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(01), pages 25-46, December.
    3. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    4. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6b, January.
    5. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    6. Jinyong Hahn & Geert Ridder, 2013. "Asymptotic Variance of Semiparametric Estimators With Generated Regressors," Econometrica, Econometric Society, vol. 81(1), pages 315-340, January.
    7. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    8. Guido W. Imbens & Donald B. Rubin & Bruce I. Sacerdote, 2001. "Estimating the Effect of Unearned Income on Labor Earnings, Savings, and Consumption: Evidence from a Survey of Lottery Players," American Economic Review, American Economic Association, vol. 91(4), pages 778-794, September.
    9. Millimet, Daniel L. & Tchernis, Rusty, 2009. "On the Specification of Propensity Scores, With Applications to the Analysis of Trade Policies," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 397-415.
    10. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    11. Heckman, J.J. & Hotz, V.J., 1988. "Choosing Among Alternative Nonexperimental Methods For Estimating The Impact Of Social Programs: The Case Of Manpower Training," University of Chicago - Economics Research Center 88-12, Chicago - Economics Research Center.
    12. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    13. J.J. Heckman & E.E. Leamer (ed.), 2007. "Handbook of Econometrics," Handbook of Econometrics, Elsevier, edition 1, volume 6, number 6a, January.
    14. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, August.
    15. repec:ags:stataj:116022 is not listed on IDEAS
    16. Becker, Sascha O. & Ichino, Andrea, 2002. "Estimation of average treatment effects based on propensity scores," Stata Journal, StataCorp LP, vol. 2(4), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    matching methods; propensity score methods; causality; unconfoundedness; potential outcomes; selection on observables;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp8049. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak). General contact details of provider: http://www.iza.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.