IDEAS home Printed from https://ideas.repec.org/p/inu/caeprp/2006013.html
   My bibliography  Save this paper

On the Specification of Propensity Scores: with Applications to the Analysis of Trade Policies

Author

Listed:
  • Daniel Millimet

    (Southern Methodist University)

  • Rusty Tchernis

    (Indiana University Bloomington)

Abstract

The use of propensity score models for program evaluation with non-experimental data typically requires the propensity score be estimated, often with a model whose specification is unknown. While theoretical results suggest that estimators utilizing more flexible propensity score specifications perform better, this has not filtered into applied research. Here, we provide Monte Carlo evidence indicating benefits of over-specifying the propensity score that are robust across a number of different covariate structures and estimators. We illustrate these results with two applications, one assessing the environmental effects of GATT/WTO membership and the other assessing the impact of euro adoption on bilateral trade.

Suggested Citation

  • Daniel Millimet & Rusty Tchernis, 2006. "On the Specification of Propensity Scores: with Applications to the Analysis of Trade Policies," CAEPR Working Papers 2006-013, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington, revised Jan 2008.
  • Handle: RePEc:inu:caeprp:2006013
    as

    Download full text from publisher

    File URL: https://caepr.indiana.edu/RePEc/inu/caeprp/caepr2006-013.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robyn Eckersley, 2004. "The Big Chill: The WTO and Multilateral Environmental Agreements," Global Environmental Politics, MIT Press, vol. 4(2), pages 24-50, May.
    2. Kyle Bagwell & Robert W. Staiger, 2001. "The WTO as a Mechanism for Securing Market Access Property Rights: Implications for Global Labor and Environmental Issues," Journal of Economic Perspectives, American Economic Association, vol. 15(3), pages 69-88, Summer.
    3. David H. Romer & Jeffrey A. Frankel, 1999. "Does Trade Cause Growth?," American Economic Review, American Economic Association, vol. 89(3), pages 379-399, June.
    4. Kyle Bagwell & Robert W. Staiger, 2001. "Domestic Policies, National Sovereignty, and International Economic Institutions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 519-562.
    5. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    6. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    7. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    8. Hidehiko Ichimura & Oliver Linton, 2001. "Asymptotic expansions for some semiparametric program evaluation estimators," CeMMAP working papers 04/01, Institute for Fiscal Studies.
    9. Chintrakarn, Pandej & Millimet, Daniel L., 2006. "The environmental consequences of trade: Evidence from subnational trade flows," Journal of Environmental Economics and Management, Elsevier, vol. 52(1), pages 430-453, July.
    10. Andrew Rose, 2005. "Which International Institutions Promote International Trade?," Review of International Economics, Wiley Blackwell, vol. 13(4), pages 682-698, September.
    11. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    12. Bryson, Alex & Dorsett, Richard & Purdon, Susan, 2002. "The use of propensity score matching in the evaluation of active labour market policies," LSE Research Online Documents on Economics 4993, London School of Economics and Political Science, LSE Library.
    13. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    14. Jeffrey A. Frankel & Andrew K. Rose, 2005. "Is Trade Good or Bad for the Environment? Sorting Out the Causality," The Review of Economics and Statistics, MIT Press, vol. 87(1), pages 85-91, February.
    15. Jason K. Luellen & William R. Shadish & M. H. Clark, 2005. "Propensity Scores," Evaluation Review, , vol. 29(6), pages 530-558, December.
    16. Andrew K. Rose, 2004. "Do We Really Know That the WTO Increases Trade?," American Economic Review, American Economic Association, vol. 94(1), pages 98-114, March.
    17. Rose, Andrew K., 2004. "Do WTO members have more liberal trade policy?," Journal of International Economics, Elsevier, vol. 63(2), pages 209-235, July.
    18. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    19. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    20. Guido W. Imbens & Whitney Newey & Geert Ridder, 2005. "Mean-square-error Calculations for Average Treatment Effects," IEPR Working Papers 05.34, Institute of Economic Policy Research (IEPR).
    21. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    22. Werner Antweiler & Brian R. Copeland & M. Scott Taylor, 2001. "Is Free Trade Good for the Environment?," American Economic Review, American Economic Association, vol. 91(4), pages 877-908, September.
    23. Elizabeth R. DeSombre & J. Samuel Barkin, 2002. "Turtles and Trade: The WTO's Acceptance of Environmental Trade Restrictions," Global Environmental Politics, MIT Press, vol. 2(1), pages 12-18, February.
    24. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Francesco Bravo & David Jacho-Chavez, 2011. "Empirical Likelihood for Efficient Semiparametric Average Treatment Effects," Econometric Reviews, Taylor & Francis Journals, vol. 30(1), pages 1-24.
    4. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    5. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    6. Dettmann, Eva & Becker, Claudia & Schmeißer, Christian, 2010. "Is there a Superior Distance Function for Matching in Small Samples?," IWH Discussion Papers 3/2010, Halle Institute for Economic Research (IWH).
    7. Jochen Kluve & Boris Augurzky, 2007. "Assessing the performance of matching algorithms when selection into treatment is strong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 533-557.
    8. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP61/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. John C. Ham & Xianghong Li & Patricia B. Reagan, 2004. "Propensity Score Matching, a Distance-Based Measure of Migration, and the Wage Growth of Young Men," Working Papers 2004_3, York University, Department of Economics.
    10. V. Joseph Hotz & Guido W. Imbens & Jacob A. Klerman, 2006. "Evaluating the Differential Effects of Alternative Welfare-to-Work Training Components: A Reanalysis of the California GAIN Program," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 521-566, July.
    11. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    12. Zhao, Zhong, 2008. "Sensitivity of propensity score methods to the specifications," Economics Letters, Elsevier, vol. 98(3), pages 309-319, March.
    13. James J. Heckman & Petra E. Todd, 2009. "A note on adapting propensity score matching and selection models to choice based samples," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 230-234, January.
    14. Jose C. Galdo & Jeffrey Smith & Dan Black, 2008. "Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data," Annals of Economics and Statistics, GENES, issue 91-92, pages 189-216.
    15. Lechner, Michael, 2004. "Sequential Matching Estimation of Dynamic Causal Models," IZA Discussion Papers 1042, Institute of Labor Economics (IZA).
    16. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    17. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    18. Maoyong Fan & Yanhong Jin, 2015. "The Supplemental Nutrition Assistance Program and Childhood Obesity in the United States: Evidence from the National Longitudinal Survey of Youth 1997," American Journal of Health Economics, MIT Press, vol. 1(4), pages 432-460, Fall.
    19. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    20. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Treatment Effects; Program Evaluation; WTO; Environment; Currency Union;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • F18 - International Economics - - Trade - - - Trade and Environment

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inu:caeprp:2006013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Center for Applied Economics and Policy Research (email available below). General contact details of provider: https://edirc.repec.org/data/caeprus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.