IDEAS home Printed from https://ideas.repec.org/p/scp/wpaper/06-57.html
   My bibliography  Save this paper

Mean-squared-error Calculations for Average Treatment Effects

Author

Listed:
  • Guido W. Imbens

    (Department of Economics, UC Berkeley and NBER)

  • Whitney Newey

    (Department of Economics, MIT)

  • Geert Ridder

    (Department of Economics, University of Southern California)

Abstract

This paper develops a new nonparametric series estimator for the average treatment effect for the case with unconfounded treatment assignment, that is, where selection for treatment is on observables. The new estimator is efficient. In addition we develop an optimal procedure for choosing the smoothing parameter, the number of terms in the series by minimizing the mean squared error (MSE). The new estimator is linear in the first-stage nonparametric estimator. This simplifies the derivation of the MSE of the estimator as a function of the number of basis functions that is used in the first stage nonparametric regression. We propose an estimator for the MSE and show that in large samples minimization of this estimator is equivalent to minimization of the population MSE.

Suggested Citation

  • Guido W. Imbens & Whitney Newey & Geert Ridder, 2006. "Mean-squared-error Calculations for Average Treatment Effects," IEPR Working Papers 06.57, Institute of Economic Policy Research (IEPR).
  • Handle: RePEc:scp:wpaper:06-57
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    Nonparametric Estimation; Imputation; Mean Squared Error; Order Selection;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scp:wpaper:06-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieuscus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.