IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v251y2025ics0304407625001344.html
   My bibliography  Save this article

On regression-adjusted imputation estimators of average treatment effects

Author

Listed:
  • Lin, Zhexiao
  • Han, Fang

Abstract

Imputing missing potential outcomes using an estimated regression function is a natural idea for estimating causal effects. In the literature, estimators that combine imputation and regression adjustments are believed to be comparable to augmented inverse probability weighting. Accordingly, people for a long time conjectured that such estimators, while avoiding directly constructing the weights, are also doubly robust (Imbens, 2004; Stuart, 2010). Generalizing an earlier result of the authors (Lin et al., 2023), this paper formalizes this conjecture, showing that a large class of regression-adjusted imputation methods are indeed doubly robust for estimating average treatment effects. In addition, they are provably semiparametrically efficient as long as both the density and regression models are correctly specified. Notable examples of imputation methods covered by our theory include kernel matching, (weighted) nearest neighbor matching, local linear matching, and (honest) random forests.

Suggested Citation

  • Lin, Zhexiao & Han, Fang, 2025. "On regression-adjusted imputation estimators of average treatment effects," Journal of Econometrics, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001344
    DOI: 10.1016/j.jeconom.2025.106080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407625001344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2025.106080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:251:y:2025:i:c:s0304407625001344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.