IDEAS home Printed from https://ideas.repec.org/a/tpr/restat/v97y2015i4p803-812.html

A Matching Estimator Based on a Bilevel Optimization Problem

Author

Listed:
  • Juan Díaz

    (Universidad de Chile)

  • Tomás Rau

    (Pontificia Universidad Católica de Chile)

  • Jorge Rivera

    (Universidad de Chile)

Abstract

This paper proposes a novel matching estimator where neighbors used and weights are endogenously determined by optimizing a covariate balancing criterion. The estimator is based on finding, for each unit that needs to be matched, sets of observations such that a convex combination of them has the same covariate values as the unit needing matching or with minimized distance between them. We implement the proposed estimator with data from the National Supported Work Demonstration, finding outstanding performance in terms of covariate balance. Monte Carlo evidence shows that our estimator performs well in designs previously used in the literature.

Suggested Citation

  • Juan Díaz & Tomás Rau & Jorge Rivera, 2015. "A Matching Estimator Based on a Bilevel Optimization Problem," The Review of Economics and Statistics, MIT Press, vol. 97(4), pages 803-812, October.
  • Handle: RePEc:tpr:restat:v:97:y:2015:i:4:p:803-812
    as

    Download full text from publisher

    File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00504
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    2. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    3. Arun Advani & Toru Kitagawa & Tymon Słoczyński, 2019. "Mostly harmless simulations? Using Monte Carlo studies for estimator selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 893-910, September.
    4. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    5. Wang, Yewen & Tang, Jiaxuan & Li, Cheng, 2025. "Registration reform and stock mispricing: Causal inference based on double machine learning," Research in International Business and Finance, Elsevier, vol. 73(PB).
    6. Wei Tian, 2023. "The Synthetic Control Method with Nonlinear Outcomes: Estimating the Impact of the 2019 Anti-Extradition Law Amendments Bill Protests on Hong Kong's Economy," Papers 2306.01967, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:97:y:2015:i:4:p:803-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The MIT Press (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.