IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02137356.html
   My bibliography  Save this paper

A Geometric Approach to Inference in Set-Identified Entry Games

Author

Listed:
  • Christian Bontemps

    (ENAC - Ecole Nationale de l'Aviation Civile, TSE - Toulouse School of Economics - UT1 - Université Toulouse 1 Capitole - Université Fédérale Toulouse Midi-Pyrénées - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Rohit Kumar

    (Indian Statistical Institute [New Delhi])

Abstract

In this paper, we consider inference procedures for entry games with complete information. Due to the presence of multiple equilibria, we know that such a model may be set-identified without imposing further restrictions. We complete the model with the unknown selection mechanism and characterize geometrically the set of predicted choice probabilities, in our case, a convex polytope with many facets. Testing whether a parameter belongs to the identified set is equivalent to testing whether the true choice probability vector belongs to this convex set. Using tools from the convex analysis, we calculate the support function and the extreme points. The calculation yields a finite number of inequalities, when the explanatory variables are discrete, and we characterized them once for all. We also propose a procedure that selects the moment inequalities without having to evaluate all of them. This procedure is computationally feasible for any number of players and is based on the geometry of the set. Furthermore, we exploit the specific structure of the test statistic used to test whether a point belongs to a convex set to propose the calculation of critical values that are computed once and independent of the value of the parameter tested, which drastically improves the calculation time. Simulations in a separate section suggest that our procedure performs well compared with existing methods.

Suggested Citation

  • Christian Bontemps & Rohit Kumar, 2020. "A Geometric Approach to Inference in Set-Identified Entry Games," Post-Print hal-02137356, HAL.
  • Handle: RePEc:hal:journl:hal-02137356
    DOI: 10.1016/j.jeconom.2020.04.021
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-02137356
    as

    Download full text from publisher

    File URL: https://hal.archives-ouvertes.fr/hal-02137356/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jeconom.2020.04.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    2. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    3. Federico Ciliberto & Elie Tamer, 2009. "Market Structure and Multiple Equilibria in Airline Markets," Econometrica, Econometric Society, vol. 77(6), pages 1791-1828, November.
    4. Gualdani, Cristina, 2018. "An Econometric Model of Network Formation with an Application to Board Interlocks between Firms," TSE Working Papers 17-898, Toulouse School of Economics (TSE), revised Jul 2019.
    5. Aradillas-Lopez, Andres & Tamer, Elie, 2008. "The Identification Power of Equilibrium in Simple Games," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 261-310.
    6. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    7. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers CWP65/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2014. "A Practical Two‐Step Method for Testing Moment Inequalities," Econometrica, Econometric Society, vol. 82, pages 1979-2002, September.
    9. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
    10. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    11. Hiroaki Kaido & Andres Santos, 2014. "Asymptotically Efficient Estimation of Models Defined by Convex Moment Inequalities," Econometrica, Econometric Society, vol. 82(1), pages 387-413, January.
    12. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    13. Berry, Steven T, 1992. "Estimation of a Model of Entry in the Airline Industry," Econometrica, Econometric Society, vol. 60(4), pages 889-917, July.
    14. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    15. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    16. Alfred Galichon & Marc Henry, 2011. "Set Identification in Models with Multiple Equilibria," Review of Economic Studies, Oxford University Press, vol. 78(4), pages 1264-1298.
    17. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Post-Print hal-02137347, HAL.
    18. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4ao8ocg is not listed on IDEAS
    19. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    20. Victor Chernozhukov & Emre Kocatulum & Konrad Menzel, 2015. "Inference on sets in finance," Quantitative Economics, Econometric Society, vol. 6(2), pages 309-358, July.
    21. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    22. Elie Tamer, 2003. "Incomplete Simultaneous Discrete Response Model with Multiple Equilibria," Review of Economic Studies, Oxford University Press, vol. 70(1), pages 147-165.
    23. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    24. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    25. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    26. Michael J. Mazzeo, 2002. "Product Choice and Oligopoly Market Structure," RAND Journal of Economics, The RAND Corporation, vol. 33(2), pages 221-242, Summer.
    27. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.
    28. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2011. "Sharp Identification Regions in Models With Convex Moment Predictions," Econometrica, Econometric Society, vol. 79(6), pages 1785-1821, November.
    29. Kathleen Cleeren & Frank Verboven & Marnik G. Dekimpe & Katrijn Gielens, 2010. "Intra- and Interformat Competition Among Discounters and Supermarkets," Marketing Science, INFORMS, vol. 29(3), pages 456-473, 05-06.
    30. Bresnahan, Timothy F & Reiss, Peter C, 1991. "Entry and Competition in Concentrated Markets," Journal of Political Economy, University of Chicago Press, vol. 99(5), pages 977-1009, October.
    31. Áureo de Paula, 2013. "Econometric Analysis of Games with Multiple Equilibria," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 107-131, May.
    32. Berry, Steven & Reiss, Peter, 2007. "Empirical Models of Entry and Market Structure," Handbook of Industrial Organization, in: Mark Armstrong & Robert Porter (ed.), Handbook of Industrial Organization, edition 1, volume 3, chapter 29, pages 1845-1886, Elsevier.
    33. Reiss, Peter C, 1996. "Empirical Models of Discrete Strategic Choices," American Economic Review, American Economic Association, vol. 86(2), pages 421-426, May.
    34. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    35. Bresnahan, Timothy F. & Reiss, Peter C., 1991. "Empirical models of discrete games," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 57-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bontemps & Rohit Kumar, 2019. "A Geometric Approach to Inference in Set-Identified Entry Games," Working Papers hal-02137356, HAL.
    2. Liao, Yuan & Simoni, Anna, 2019. "Bayesian inference for partially identified smooth convex models," Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.
    3. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    4. Larry G. Epstein & Hiroaki Kaido & Kyoungwon Seo, 2016. "Robust Confidence Regions for Incomplete Models," Econometrica, Econometric Society, vol. 84, pages 1799-1838, September.
    5. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    6. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers CWP22/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    8. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    9. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
    10. Fan, Yanqin & Park, Sang Soo, 2010. "Confidence sets for some partially identified parameters," MPRA Paper 37149, University Library of Munich, Germany.
    11. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    12. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers CWP65/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers CWP05/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Kline, Brendan & Tamer, Elie, 2012. "Bounds for best response functions in binary games," Journal of Econometrics, Elsevier, vol. 166(1), pages 92-105.
    15. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.
    16. Hiroaki Kaido & Jiaxuan Li & Marc Rysman, 2018. "Moment Inequalities in the Context of Simulated and Predicted Variables," Papers 1804.03674, arXiv.org.
    17. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    18. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    19. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    20. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.

    More about this item

    Keywords

    Entry games; Convex set; Set-identification; Support function;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02137356. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.