IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/43262.html
   My bibliography  Save this paper

Semi-parametric Bayesian Partially Identified Models based on Support Function

Author

Listed:
  • Liao, Yuan
  • Simoni, Anna

Abstract

Bayesian partially identified models have received a growing attention in recent years in the econometric literature, due to their broad applications in empirical studies. Classical Bayesian approach in this literature has been assuming a parametric model, by specifying an ad-hoc parametric likelihood function. However, econometric models usually only identify a set of moment inequalities, and therefore assuming a known likelihood function suffers from the risk of misspecification, and may result in inconsistent estimations of the identified set. On the other hand, moment-condition based likelihoods such as the limited information and exponential tilted empirical likelihood, though guarantee the consistency, lack of probabilistic interpretations. We propose a semi-parametric Bayesian partially identified model, by placing a nonparametric prior on the unknown likelihood function. Our approach thus only requires a set of moment conditions but still possesses a pure Bayesian interpretation. We study the posterior of the support function, which is essential when the object of interest is the identified set. The support function also enables us to construct two-sided Bayesian credible sets (BCS) for the identified set. It is found that, while the BCS of the partially identified parameter is too narrow from the frequentist point of view, that of the identified set has asymptotically correct coverage probability in the frequentist sense. Moreover, we establish the posterior consistency for both the structural parameter and its identified set. We also develop the posterior concentration theory for the support function, and prove the semi-parametric Bernstein von Mises theorem. Finally, the proposed method is applied to analyze a financial asset pricing problem.

Suggested Citation

  • Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:43262
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/43262/1/MPRA_paper_43262.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(3), pages 669-709, June.
    2. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Florens, Jean-Pierre & Simoni, Anna, 2012. "Nonparametric estimation of an instrumental regression: A quasi-Bayesian approach based on regularized posterior," Journal of Econometrics, Elsevier, vol. 170(2), pages 458-475.
    5. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    6. repec:hrv:faseco:34728615 is not listed on IDEAS
    7. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    8. Jörg Stoye, 2012. "New Perspectives on Statistical Decisions Under Ambiguity," Annual Review of Economics, Annual Reviews, vol. 4(1), pages 257-282, July.
    9. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers CWP43/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    11. Hiroaki Kaido & Andres Santos, 2014. "Asymptotically Efficient Estimation of Models Defined by Convex Moment Inequalities," Econometrica, Econometric Society, vol. 82(1), pages 387-413, January.
    12. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    13. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    14. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    15. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    16. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, February.
    17. Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "A Bayesian analysis of binary misclassification," Economics Letters, Elsevier, vol. 156(C), pages 68-73.
    18. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    19. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    20. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    21. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    22. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, January.
    23. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    24. Paul Milgrom & Ilya Segal, 2002. "Envelope Theorems for Arbitrary Choice Sets," Econometrica, Econometric Society, vol. 70(2), pages 583-601, March.
    25. Kim, Jae-Young, 2002. "Limited information likelihood and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 175-193, March.
    26. Arie Beresteanu & Ilya Molchanov & Francesca Molinari, 2011. "Sharp Identification Regions in Models With Convex Moment Predictions," Econometrica, Econometric Society, vol. 79(6), pages 1785-1821, November.
    27. Andriy Norets & Xun Tang, 2010. "Semiparametric Inference in Dynamic Binary Choice Models, Second Version," PIER Working Paper Archive 12-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Apr 2012.
    28. Jorg Stoye, 2009. "More on Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 77(4), pages 1299-1315, July.
    29. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    30. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    31. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 483-509, August.
    32. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    33. Philip A. Haile & Elie Tamer, 2003. "Inference with an Incomplete Model of English Auctions," Journal of Political Economy, University of Chicago Press, vol. 111(1), pages 1-51, February.
    34. Kaido, Hiroaki, 2016. "A dual approach to inference for partially identified econometric models," Journal of Econometrics, Elsevier, vol. 192(1), pages 269-290.
    35. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    36. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomini, Raffaella & Kitagawa, Toru, 2014. "Inference about Non-Identified SVARs," CEPR Discussion Papers 10287, C.E.P.R. Discussion Papers.
    2. Raffaella Giacomini & Toru Kitagawa & Alessio Volpicella, 2017. "Uncertain identification," CeMMAP working papers CWP18/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. repec:hrv:faseco:30780157 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
    2. Liao, Yuan & Simoni, Anna, 2019. "Bayesian inference for partially identified smooth convex models," Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.
    3. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    4. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    5. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers CWP22/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    7. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    8. Xiaohong Chen & Timothy Christensen & Keith O'Hara & Elie Tamer, 2016. "MCMC Confidence sets for Identified Sets," Cowles Foundation Discussion Papers 2037R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2016.
    9. Li, Tong & Oka, Tatsushi, 2015. "Set identification of the censored quantile regression model for short panels with fixed effects," Journal of Econometrics, Elsevier, vol. 188(2), pages 363-377.
    10. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    11. Armstrong, Timothy B., 2015. "Asymptotically exact inference in conditional moment inequality models," Journal of Econometrics, Elsevier, vol. 186(1), pages 51-65.
    12. Kyungchul Song, 2009. "Point Decisions for Interval-Identified Parameters," PIER Working Paper Archive 09-036, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    13. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    14. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    15. Bontemps, Christian & Kumar, Rohit, 2020. "A geometric approach to inference in set-identified entry games," Journal of Econometrics, Elsevier, vol. 218(2), pages 373-389.
    16. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    17. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    18. Kaido, Hiroaki, 2016. "A dual approach to inference for partially identified econometric models," Journal of Econometrics, Elsevier, vol. 192(1), pages 269-290.
    19. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    20. Lee, Ying-Ying & Bhattacharya, Debopam, 2019. "Applied welfare analysis for discrete choice with interval-data on income," Journal of Econometrics, Elsevier, vol. 211(2), pages 361-387.

    More about this item

    Keywords

    partial identification; posterior consistency; concentration rate; support function; two-sided Bayesian credible sets; identified set; coverage probability; moment inequality models;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43262. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.