IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/46-12.html
   My bibliography  Save this paper

Inference on sets in finance

Author

Listed:
  • Victor Chernozhukov

    () (Institute for Fiscal Studies and MIT)

  • Emre Kocatulum

    (Institute for Fiscal Studies)

  • Konrad Menzel

    () (Institute for Fiscal Studies)

Abstract

In this paper we consider the problem of inference on a class of sets describing a collection of admissible models as solutions to a single smooth inequality. Classical and recent examples include, among others, the Hansen-Jagannathan (HJ) variances for asset portfolio returns, and the set of structural elasticities in Chetty's (2012) analysis of demand with optimisation frictions. We show that the econometric structure of the problem allows us to construct convenient and powerful confidence regions based upon the weighted likelihood ration and weighted Wald (directed weighted Hausdorff) statistics. The statistics we formulate differ (in part) from existing statistics in that they enforce either exact or first order equivariance to transformations of parameters, making them especially appealing in the target applications. Moreover, the resulting inference procedures are also more powerful than the structured projection methods, which rely upon building confidence sets for the frontier-determining sufficient parameters (e.g. frontier-spanning portfolios), and then projecting them to obtain confidence sets for HJ sets or MF sets. Lastly, the framework we put forward is also useful for analysing intersection bounds, namely sets defined as solutions to multiple smooth inequalities, since multiple inequalities can be conservatively approximated by a single smooth inequality. We present two empirical examples that show how the new econometric methods are able to generate sharp economic conclusions.

Suggested Citation

  • Victor Chernozhukov & Emre Kocatulum & Konrad Menzel, 2012. "Inference on sets in finance," CeMMAP working papers CWP46/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:46/12
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp461212.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Jagannathan, Ravi, 1991. "Implications of Security Market Data for Models of Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 225-262, April.
    2. Hiroaki Kaido & Andres Santos, 2014. "Asymptotically Efficient Estimation of Models Defined by Convex Moment Inequalities," Econometrica, Econometric Society, vol. 82(1), pages 387-413, January.
    3. Raj Chetty, 2012. "Bounds on Elasticities With Optimization Frictions: A Synthesis of Micro and Macro Evidence on Labor Supply," Econometrica, Econometric Society, vol. 80(3), pages 969-1018, May.
    4. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    5. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    6. Critchley, Frank & Marriott, Paul & Salmon, Mark, 1996. "On the Differential Geometry of the Wald Test with Nonlinear Restrictions," Econometrica, Econometric Society, vol. 64(5), pages 1213-1222, September.
    7. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    8. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-1286, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gospodinov, Nikolay & Kan, Raymond & Robotti, Cesare, 2016. "On the properties of the constrained Hansen–Jagannathan distance," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 121-150.
    2. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.

    More about this item

    Keywords

    Hansen-Jagannathan bound; Markowitz-Fama bounds; Chetty bounds; Mean-Variance sets; Optimisation Frictions; Inference; Confidence Set;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:46/12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.