IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymptotic properties for a class of partially identified models

  • Arie Beresteanu

    ()

    (Institute for Fiscal Studies and University of Pittsburgh)

  • Francesca Molinari

    ()

    (Institute for Fiscal Studies and Cornell University)

We propose inference procedures for partially identified population features for which the population identification region can be written as a transformation of the Aumann expectation of a properly defined set valued random variable (SVRV). An SVRV is a mapping that associates a set (rather than a real number) with each element of the sample space. Examples of population features in this class include sample means and best linear predictors with interval outcome data, and parameters of semiparametric binary models with interval regressor data. We extend the analogy principle to SVRVs, and show that the sample analog estimator of the population identification region is given by a transformation of a Minkowski average of SVRVs. Using the results of the mathematics literature on SVRVs, we show that this estimator converges in probability to the identification region of the model with respect to the Hausdorff distance. We then show that the Hausdorff distance between the estimator and the population identification region, when properly normalized by vn, converges in distribution to the supremum of a Gaussian process whose covariance kernel depends on parameters of the population identification region. We provide consistent bootstrap procedures to approximate this limiting distribution. Using similar arguments as those applied for vector valued random variables, we develop a methodology to test assumptions about the true identification region and to calculate the power of the test. We show that these results can be used to construct a confidence collection, that is a collection of sets that, when specified as null hypothesis for the true value of the population identification region, cannot be rejected by our test.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cemmap.ifs.org.uk/wps/cwp1006.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP10/06.

as
in new window

Length: 58 pp.
Date of creation: Jun 2006
Date of revision:
Handle: RePEc:ifs:cemmap:10/06
Contact details of provider: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Guido Imbens & Charles F. Manski, 2003. "Confidence intervals for partially identified parameters," CeMMAP working papers CWP09/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  2. Joseph P. Romano & Azeem M. Shaikh, 2010. "Inference for the Identified Set in Partially Identified Econometric Models," Econometrica, Econometric Society, vol. 78(1), pages 169-211, 01.
  3. Adam Rosen, 2006. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," CeMMAP working papers CWP25/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  4. E. Tamer & V. Chernozhukov & H. Hong, 2004. "Parameter Set Inference in a Class of Econometric Models," Econometric Society 2004 North American Winter Meetings 382, Econometric Society.
  5. Molinari, Francesca, 2005. "Partial Identification of Probability Distributions with Misclassified Data," Working Papers 05-10, Cornell University, Center for Analytic Economics.
  6. Arthur Lewbel, 2000. "Identification of the Binary Choice Model with Misclassification," Boston College Working Papers in Economics 457, Boston College Department of Economics.
  7. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
  8. Gleb Koshevoy, 1997. "The Lorenz zonotope and multivariate majorizations," Social Choice and Welfare, Springer, vol. 15(1), pages 1-14.
  9. Starr, Ross M, 1969. "Quasi-Equilibria in Markets with Non-Convex Preferences," Econometrica, Econometric Society, vol. 37(1), pages 25-38, January.
  10. Joel L. Horowitz & Charles F. Manski, 1996. "Censoring of Outcomes and Regressors Due To Survey Nonresponse: Identification and Estimation Using Weights and Imputations," Econometrics 9602007, EconWPA, revised 06 Mar 1996.
  11. repec:cup:cbooks:9780521784504 is not listed on IDEAS
  12. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
  13. Donald W.K. Andrews, 1996. "A Conditional Kolmogorov Test," Cowles Foundation Discussion Papers 1111R, Cowles Foundation for Research in Economics, Yale University.
  14. Horowitz, J.L. & Manski, C.F., 1995. "What Can Be Learned About Population Parameters when the Data Are Contaminated," Working Papers 95-18, University of Iowa, Department of Economics.
  15. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," Review of Economic Studies, Oxford University Press, vol. 75(3), pages 835-864.
  16. Manski, C.F., 1990. "The Selection Problem," Working papers 90-12, Wisconsin Madison - Social Systems.
  17. Horowitz, Joel & Manski, Charles, 1997. "Nonparametric Analysis of Randomized Experiments With Missing Covariate and Outcome Data," Working Papers 97-16, University of Iowa, Department of Economics.
  18. K. Mosler, 2003. "Central regions and dependency," Econometrics 0309004, EconWPA.
  19. Bo E. Honoré & Elie Tamer, 2002. "Bounds on Parameters in Dynamic Discrete Choice Models," CAM Working Papers 2004-23, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics, revised Aug 2004.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:10/06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benita Rajania)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.