IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Central regions and dependency

Listed author(s):
  • K. Mosler

    (Universität zu Köln)

The paper introduces an approach to the ordering of dependence which is based on central regions. A d-variate probability distribution is described by a nested family of sets, called central regions. Those regions are affine equivariant, compact and starshaped and concentrate about a properly defined center. They can be seen as level sets of a depth function. Special cases are Mahalanobis, zonoid, and likelihood regions. A d-variate distribution is called more dependent than another one if the volume of each central region is smaller with the first distribution. This dependence order is characterized by an inequality between determinants of certain parameter matrices if either (i) F and G are arbitrary distributions and the central regions are Mahalanobis or (ii) F and G belong to an elliptical family of distributions and the central regions are arbitrary. If the regions are zonoid regions, the dependence order implies the ordering of lift zonoid volumes. Alternatively, the dependence order is applied to the copulae of the given distributions. Generalized correlation indices are proposed which are increasing with the dependence orders.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0309004.

in new window

Length: 16 pages
Date of creation: 15 Sep 2003
Handle: RePEc:wpa:wuwpem:0309004
Note: Type of Document - Post Script; pages: 16 ; figures: included. This is a preprint of an article accepted for publication in "Methology and Computing in Applied Probability"
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Dall'Aglio, Marco & Scarsini, Marco, 2001. "When Lorenz met Lyapunov," Statistics & Probability Letters, Elsevier, vol. 54(1), pages 101-105, August.
  2. Hannu Oja, 1999. "Affine Invariant Multivariate Sign and Rank Tests and Corresponding Estimates: a Review," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 319-343.
  3. Koshevoy, G. A. & Mosler, K., 1997. "Multivariate Gini Indices," Journal of Multivariate Analysis, Elsevier, vol. 60(2), pages 252-276, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0309004. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.