IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v58y2017i3d10.1007_s00362-015-0715-x.html
   My bibliography  Save this article

Multivariate tests of uniformity

Author

Listed:
  • Mengta Yang

    (George Washington University)

  • Reza Modarres

    (George Washington University)

Abstract

We present tests of multivariate uniformity using data depth, the normal quantiles and the interpoint distances between the observations. We investigate the properties of the interpoint distances among uniform random vectors. We compare the performance of the proposed tests with two existing statistics under the hypothesis of uniformity and obtain their empirical power under various alternatives in a Monte Carlo study.

Suggested Citation

  • Mengta Yang & Reza Modarres, 2017. "Multivariate tests of uniformity," Statistical Papers, Springer, vol. 58(3), pages 627-639, September.
  • Handle: RePEc:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0715-x
    DOI: 10.1007/s00362-015-0715-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-015-0715-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-015-0715-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl Mosler, 2003. "Central Regions and Dependency," Methodology and Computing in Applied Probability, Springer, vol. 5(1), pages 5-21, March.
    2. Pavlo Mozharovskyi & Karl Mosler & Tatjana Lange, 2015. "Classifying real-world data with the $${ DD}\alpha $$ D D α -procedure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 287-314, September.
    3. Modarres, Reza, 2014. "On the interpoint distances of Bernoulli vectors," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 215-222.
    4. Petrie, Adam & Willemain, Thomas R., 2013. "An empirical study of tests for uniformity in multidimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 253-268.
    5. M. Pardo, 2003. "A test for uniformity based on informational energy," Statistical Papers, Springer, vol. 44(4), pages 521-534, October.
    6. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    7. Y. A. S. Hegazy & J. R. Green, 1975. "Some New Goodness‐Of‐Fit Tests Using Order Statistics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(3), pages 299-308, November.
    8. Zhenyu Liu & Reza Modarres, 2011. "Lens data depth and median," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(4), pages 1063-1074.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stanislav Nagy, 2021. "Halfspace depth does not characterize probability distributions," Statistical Papers, Springer, vol. 62(3), pages 1135-1139, June.
    2. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    2. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    3. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    4. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    5. Reza Modarres, 2018. "Multinomial interpoint distances," Statistical Papers, Springer, vol. 59(1), pages 341-360, March.
    6. Pavlo Mozharovskyi & Karl Mosler & Tatjana Lange, 2015. "Classifying real-world data with the $${ DD}\alpha $$ D D α -procedure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 287-314, September.
    7. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    8. Liu, Zhenyu & Modarres, Reza & Yang, Mengta, 2013. "A multivariate control quantile test using data depth," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 262-270.
    9. Gleb A. Koshevoy & Karl Mosler, 2007. "Multivariate Lorenz dominance based on zonoids," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 91(1), pages 57-76, March.
    10. Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    12. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    13. Anthony Medford & James W. Vaupel, 2020. "Extremes are not normal: a reminder to demographers," Journal of Population Research, Springer, vol. 37(1), pages 91-106, March.
    14. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    15. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    16. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    17. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    18. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    19. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Discussion Paper 2015-020, Tilburg University, Center for Economic Research.
    20. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    21. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    22. Molchanov, Ilya, 2006. "Multivariate risks and depth-trimmed regions," DES - Working Papers. Statistics and Econometrics. WS ws063815, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:58:y:2017:i:3:d:10.1007_s00362-015-0715-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.