IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v98y2016icp19-30.html
   My bibliography  Save this article

Exact computation of the halfspace depth

Author

Listed:
  • Dyckerhoff, Rainer
  • Mozharovskyi, Pavlo

Abstract

For computing the exact value of the halfspace depth of a point w.r.t. a data cloud of n points in arbitrary dimension, a theoretical framework is suggested. Based on this framework a whole class of algorithms can be derived. In all of these algorithms the depth is calculated as the minimum over a finite number of depth values w.r.t. proper projections of the data cloud. Three variants of this class are studied in more detail. All of these algorithms are capable of dealing with data that are not in general position and even with data that contain ties. As is shown by simulations, all proposed algorithms prove to be very efficient.

Suggested Citation

  • Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
  • Handle: RePEc:eee:csdana:v:98:y:2016:i:c:p:19-30
    DOI: 10.1016/j.csda.2015.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315003199
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    2. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.
    3. Ruts, Ida & Rousseeuw, Peter J., 1996. "Computing depth contours of bivariate point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 153-168, November.
    4. Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
    5. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    6. Davy Paindaveine & Miroslav Šiman, 2012. "Computing multiple-output regression quantile regions from projection quantiles," Computational Statistics, Springer, vol. 27(1), pages 29-49, March.
    7. Koshevoy, Gleb A., 2002. "The Tukey Depth Characterizes the Atomic Measure," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 360-364, November.
    8. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    9. Paindaveine, Davy & Šiman, Miroslav, 2012. "Computing multiple-output regression quantile regions," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 840-853.
    10. Peter J. Rousseeuw & Ida Ruts, 1996. "Bivariate Location Depth," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 516-526, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    2. Burr, Michael A. & Fabrizio, Robert J., 2017. "Uniform convergence rates for halfspace depth," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 33-40.
    3. Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    4. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    5. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    6. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    7. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    8. Daniel Kosiorowski & Jerzy P. Rydlewski, 2020. "Centrality-oriented causality. A study of EU agricultural subsidies and digital developement in Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 47-63.
    9. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    10. Ramsay, Kelly & Durocher, Stéphane & Leblanc, Alexandre, 2019. "Integrated rank-weighted depth," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 51-69.
    11. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    12. Kosiorowski Daniel & Jerzy P. Rydlewski, 2019. "Centrality-oriented Causality -- A Study of EU Agricultural Subsidies and Digital Developement in Poland," Papers 1908.11099, arXiv.org, revised Sep 2019.
    13. Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    14. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    15. Zhang, Xu & Tian, Yahui & Guan, Guoyu & Gel, Yulia R., 2021. "Depth-based classification for relational data with multiple attributes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    2. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    3. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    4. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    5. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    6. repec:hal:spmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    7. repec:spo:wpmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    8. repec:hal:spmain:info:hdl:2441/64itsev5509q8aa5mrbhi0g0b6 is not listed on IDEAS
    9. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    10. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    11. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
    12. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    13. Kotík, Lukáš & Hlubinka, Daniel, 2017. "A weighted localization of halfspace depth and its properties," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 53-69.
    14. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    15. Liu, Xiaohui & Rahman, Jafer & Luo, Shihua, 2019. "Generalized and robustified empirical depths for multivariate data," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 70-79.
    16. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    17. repec:cte:wsrepe:35465 is not listed on IDEAS
    18. Mosler, Karl & Lange, Tatjana & Bazovkin, Pavel, 2009. "Computing zonoid trimmed regions of dimension d>2," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2500-2510, May.
    19. Montes-Rojas, Gabriel, 2017. "Reduced form vector directional quantiles," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 20-30.
    20. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    21. Bazovkin, Pavel & Mosler, Karl, 2012. "An Exact Algorithm for Weighted-Mean Trimmed Regions in Any Dimension," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i13).
    22. Pavel Boček & Miroslav Šiman, 2017. "On weighted and locally polynomial directional quantile regression," Computational Statistics, Springer, vol. 32(3), pages 929-946, September.
    23. Liu, Xiaohui & Zuo, Yijun & Wang, Zhizhong, 2013. "Exactly computing bivariate projection depth contours and median," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 1-11.
    24. Cascos, Ignacio & Ochoa, Maicol, 2021. "Expectile depth: Theory and computation for bivariate datasets," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:98:y:2016:i:c:p:19-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.