IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01500-6.html
   My bibliography  Save this article

Exact and approximate computation of the scatter halfspace depth

Author

Listed:
  • Xiaohui Liu

    (Jiangxi University of Finance and Economics)

  • Yuzi Liu

    (Jiangxi University of Finance and Economics)

  • Petra Laketa

    (Charles University)

  • Stanislav Nagy

    (Charles University)

  • Yuting Chen

    (University of Maryland)

Abstract

The scatter halfspace depth (sHD) is an extension of the location halfspace (also called Tukey) depth that is applicable in the nonparametric analysis of scatter. Using sHD, it is possible to define minimax optimal robust scatter estimators for multivariate data. The problem of exact computation of sHD for data of dimension $$d \ge 2$$ d ≥ 2 has, however, not been addressed in the literature. We develop an exact algorithm for the computation of sHD in any dimension d and implement it efficiently for any dimension $$d \ge 1$$ d ≥ 1 . Since the exact computation of sHD is slow especially for higher dimensions, we also propose two fast approximate algorithms. All our programs are freely available in the R package scatterdepth.

Suggested Citation

  • Xiaohui Liu & Yuzi Liu & Petra Laketa & Stanislav Nagy & Yuting Chen, 2025. "Exact and approximate computation of the scatter halfspace depth," Computational Statistics, Springer, vol. 40(1), pages 547-572, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01500-6
    DOI: 10.1007/s00180-024-01500-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01500-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01500-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
    2. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    2. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    3. Maximilian Böck & Martin Feldkircher & Florian Huber, 2020. "BGVAR: Bayesian Global Vector Autoregressions with Shrinkage Priors in R," Globalization Institute Working Papers 395, Federal Reserve Bank of Dallas.
    4. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    5. Shen, Yunyi & Olson, Erik R. & Van Deelen, Timothy R., 2021. "Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore," Ecological Modelling, Elsevier, vol. 459(C).
    6. Daniel Kosiorowski & Jerzy P. Rydlewski, 2020. "Centrality-oriented causality. A study of EU agricultural subsidies and digital developement in Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 47-63.
    7. Zhe Yu & Raquel Prado & Erin Burke Quinlan & Steven C. Cramer & Hernando Ombao, 2016. "Understanding the Impact of Stroke on Brain Motor Function: A Hierarchical Bayesian Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 549-563, April.
    8. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    9. Xiaotian Zhu & David R. Hunter, 2019. "Clustering via finite nonparametric ICA mixture models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 65-87, March.
    10. Matthew Pietrosanu & Jueyu Gao & Linglong Kong & Bei Jiang & Di Niu, 2021. "Advanced algorithms for penalized quantile and composite quantile regression," Computational Statistics, Springer, vol. 36(1), pages 333-346, March.
    11. Jonathan Berrisch & Florian Ziel, 2021. "CRPS Learning," Papers 2102.00968, arXiv.org, revised Nov 2021.
    12. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    13. Bogdan Oancea & Tudorel Andrei & Raluca Mariana Dragoescu, 2015. "Accelerating R with high performance linear algebra libraries," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 109-117, September.
    14. Ankargren, Sebastian & Jonéus, Paulina, 2021. "Simulation smoothing for nowcasting with large mixed-frequency VARs," Econometrics and Statistics, Elsevier, vol. 19(C), pages 97-113.
    15. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    16. Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
    17. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    18. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    19. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    20. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01500-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.