IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01500-6.html
   My bibliography  Save this article

Exact and approximate computation of the scatter halfspace depth

Author

Listed:
  • Xiaohui Liu

    (Jiangxi University of Finance and Economics)

  • Yuzi Liu

    (Jiangxi University of Finance and Economics)

  • Petra Laketa

    (Charles University)

  • Stanislav Nagy

    (Charles University)

  • Yuting Chen

    (University of Maryland)

Abstract

The scatter halfspace depth (sHD) is an extension of the location halfspace (also called Tukey) depth that is applicable in the nonparametric analysis of scatter. Using sHD, it is possible to define minimax optimal robust scatter estimators for multivariate data. The problem of exact computation of sHD for data of dimension $$d \ge 2$$ d ≥ 2 has, however, not been addressed in the literature. We develop an exact algorithm for the computation of sHD in any dimension d and implement it efficiently for any dimension $$d \ge 1$$ d ≥ 1 . Since the exact computation of sHD is slow especially for higher dimensions, we also propose two fast approximate algorithms. All our programs are freely available in the R package scatterdepth.

Suggested Citation

  • Xiaohui Liu & Yuzi Liu & Petra Laketa & Stanislav Nagy & Yuting Chen, 2025. "Exact and approximate computation of the scatter halfspace depth," Computational Statistics, Springer, vol. 40(1), pages 547-572, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01500-6
    DOI: 10.1007/s00180-024-01500-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01500-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01500-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eddelbuettel, Dirk & Sanderson, Conrad, 2014. "RcppArmadillo: Accelerating R with high-performance C++ linear algebra," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1054-1063.
    2. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    2. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    3. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    4. Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
    5. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    6. Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
    7. Andrii ROSKLADKA & Roman BAIEV, 2021. "Digitalization of data analysis tools as the key for success in the online trading markets," Access Journal, Access Press Publishing House, vol. 2(3), pages 222-233, September.
    8. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    9. Mihai C. Giurcanu, 2017. "Oracle M-Estimation for Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 479-504, May.
    10. Aaron T L Lun & Hervé Pagès & Mike L Smith, 2018. "beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-15, May.
    11. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    12. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    13. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    14. Kosiorowski Daniel & Jerzy P. Rydlewski, 2019. "Centrality-oriented Causality -- A Study of EU Agricultural Subsidies and Digital Developement in Poland," Papers 1908.11099, arXiv.org, revised Sep 2019.
    15. Helmut Lutkepohl & Fei Shang & Luis Uzeda & Tomasz Wo'zniak, 2024. "Partial Identification of Heteroskedastic Structural VARs: Theory and Bayesian Inference," Papers 2404.11057, arXiv.org.
    16. Enrique Martínez García & Efthymios Pavlidis & Kostas Vasilopoulos, 2020. "exuber: Recursive Right-Tailed Unit Root Testing with R," Globalization Institute Working Papers 383, Federal Reserve Bank of Dallas, revised 19 Oct 2021.
    17. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    18. Berrisch, Jonathan & Ziel, Florian, 2023. "CRPS learning," Journal of Econometrics, Elsevier, vol. 237(2).
    19. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01500-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.