IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v209y2025ics0167947325000489.html
   My bibliography  Save this article

Model-based edge clustering for weighted networks with a noise component

Author

Listed:
  • Li, Haomin
  • Sewell, Daniel K.

Abstract

Clustering is a fundamental task in network analysis, essential for uncovering hidden structures within complex systems. Edge clustering, which focuses on relationships between nodes rather than the nodes themselves, has gained increased attention in recent years. However, existing edge clustering algorithms often overlook the significance of edge weights, which can represent the strength or capacity of connections, and fail to account for noisy edges—connections that obscure the true structure of the network. To address these challenges, the Weighted Edge Clustering Adjusting for Noise (WECAN) model is introduced. This novel algorithm integrates edge weights into the clustering process and includes a noise component that filters out spurious edges. WECAN offers a data-driven approach to distinguishing between meaningful and noisy edges, avoiding the arbitrary thresholding commonly used in network analysis. Its effectiveness is demonstrated through simulation studies and applications to real-world datasets, showing significant improvements over traditional clustering methods. Additionally, the R package “WECAN”1 has been developed to facilitate its practical implementation.

Suggested Citation

  • Li, Haomin & Sewell, Daniel K., 2025. "Model-based edge clustering for weighted networks with a noise component," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000489
    DOI: 10.1016/j.csda.2025.108172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947325000489
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2025.108172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:209:y:2025:i:c:s0167947325000489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.