IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v124y2017icp33-40.html
   My bibliography  Save this article

Uniform convergence rates for halfspace depth

Author

Listed:
  • Burr, Michael A.
  • Fabrizio, Robert J.

Abstract

Data depth functions are a generalization of one-dimensional order statistics and medians to real spaces of dimension greater than one; in particular, a data depth function quantifies the centrality of a point with respect to a data set or a probability distribution. One of the most commonly studied data depth functions is halfspace depth. Halfspace depth is of interest to computational geometers because it is highly geometric, and it is of interest to statisticians because it shares many desirable theoretical properties with the one-dimensional median. It is known that as the sample size increases, the halfspace depth for a sample converges to the halfspace depth for the underlying distribution, almost surely. In this paper, we use the geometry and structure of halfspace depth to reduce a high-dimensional problem into many one-dimensional problems. This bound requires only mild assumptions on the distribution, and it leads to an improved convergence rate when the underlying distribution decays exponentially, i.e., the probability that a sample point has magnitude at least R is O(exp(−λR2/2)). We also provide examples and show that our bounds are tight.

Suggested Citation

  • Burr, Michael A. & Fabrizio, Robert J., 2017. "Uniform convergence rates for halfspace depth," Statistics & Probability Letters, Elsevier, vol. 124(C), pages 33-40.
  • Handle: RePEc:eee:stapro:v:124:y:2017:i:c:p:33-40
    DOI: 10.1016/j.spl.2017.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217300093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    2. Kim, Jeankyung, 2000. "Rate of convergence of depth contours: with application to a multivariate metrically trimmed mean," Statistics & Probability Letters, Elsevier, vol. 49(4), pages 393-400, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    2. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    3. Xiaohui Liu & Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast computation of Tukey trimmed regions and median in dimension p > 2," Working Papers 2017-71, Center for Research in Economics and Statistics.
    4. Kosiorowski Daniel & Jerzy P. Rydlewski, 2019. "Centrality-oriented Causality -- A Study of EU Agricultural Subsidies and Digital Developement in Poland," Papers 1908.11099, arXiv.org, revised Sep 2019.
    5. Hamel, Andreas H. & Kostner, Daniel, 2022. "Computation of quantile sets for bivariate ordered data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    6. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    7. Zhang, Xu & Tian, Yahui & Guan, Guoyu & Gel, Yulia R., 2021. "Depth-based classification for relational data with multiple attributes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    8. Petra Laketa & Stanislav Nagy, 2022. "Halfspace depth for general measures: the ray basis theorem and its consequences," Statistical Papers, Springer, vol. 63(3), pages 849-883, June.
    9. Olive, David J., 2004. "A resistant estimator of multivariate location and dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 93-102, May.
    10. Kim, Jeankyung & Hwang, Jinsoo, 2001. "Asymptotic properties of location estimators based on projection depth," Statistics & Probability Letters, Elsevier, vol. 55(3), pages 293-299, December.
    11. Daniel Kosiorowski & Jerzy P. Rydlewski, 2020. "Centrality-oriented causality. A study of EU agricultural subsidies and digital developement in Poland," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(3), pages 47-63.
    12. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    13. Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    14. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    15. Ramsay, Kelly & Durocher, Stéphane & Leblanc, Alexandre, 2019. "Integrated rank-weighted depth," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 51-69.
    16. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    17. Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    18. Laketa, Petra & Nagy, Stanislav, 2021. "Reconstruction of atomic measures from their halfspace depth," Journal of Multivariate Analysis, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:124:y:2017:i:c:p:33-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.