IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Multivariate risks and depth-trimmed regions

  • Ignacio Cascos
  • Ilya Molchanov
Registered author(s):

    We describe a general framework for measuring risks, where the risk measure takes values in an abstract cone. It is shown that this approach naturally includes the classical risk measures and set-valued risk measures and yields a natural definition of vector-valued risk measures. Several main constructions of risk measures are described in this abstract axiomatic framework. It is shown that the concept of depth-trimmed (or central) regions from the multivariate statistics is closely related to the definition of risk measures. In particular, the halfspace trimming corresponds to the Value-at-Risk, while the zonoid trimming yields the expected shortfall. In the abstract framework, it is shown how to establish a both-ways correspondence between risk measures and depth-trimmed regions. It is also demonstrated how the lattice structure of the space of risk values influences this relationship.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://arxiv.org/pdf/math/0606520
    File Function: Latest version
    Download Restriction: no

    Paper provided by arXiv.org in its series Papers with number math/0606520.

    as
    in new window

    Length:
    Date of creation: Jun 2006
    Date of revision: Nov 2006
    Handle: RePEc:arx:papers:math/0606520
    Contact details of provider: Web page: http://arxiv.org/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Robert Jarrow, 2002. "Put Option Premiums and Coherent Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 135-142.
    2. Masse, J. C. & Theodorescu, R., 1994. "Halfplane Trimming for Bivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 48(2), pages 188-202, February.
    3. Elyès Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued Coherent Risk Measures," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00167154, HAL.
    4. K. Mosler, 2003. "Central regions and dependency," Econometrics 0309004, EconWPA.
    5. Touzi, Nizar & Meddeb, Moncef & Jouini, Elyès, 2004. "Vector-valued Coherent Risk Measures," Economics Papers from University Paris Dauphine 123456789/353, Paris Dauphine University.
    6. Cascos, Ignacio & López-Díaz, Miguel, 2005. "Integral trimmed regions," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 404-424, October.
    7. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    8. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    9. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    10. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    11. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    12. Alexander S. Cherny & Dilip B. Madan, 2006. "CAPM, rewards, and empirical asset pricing with coherent risk," Papers math/0605065, arXiv.org.
    13. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0606520. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.