IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1202.5702.html
   My bibliography  Save this paper

Set-valued average value at risk and its computation

Author

Listed:
  • Andreas H. Hamel
  • Birgit Rudloff
  • Mihaela Yankova

Abstract

New versions of the set-valued average value at risk for multivariate risks are introduced by generalizing the well-known certainty equivalent representation to the set-valued case. The first "regulator" version is independent from any market model whereas the second version, called the market extension, takes trading opportunities into account. Essential properties of both versions are proven and an algorithmic approach is provided which admits to compute the values of both version over finite probability spaces. Several examples illustrate various features of the theoretical constructions.

Suggested Citation

  • Andreas H. Hamel & Birgit Rudloff & Mihaela Yankova, 2012. "Set-valued average value at risk and its computation," Papers 1202.5702, arXiv.org, revised Jan 2013.
  • Handle: RePEc:arx:papers:1202.5702
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1202.5702
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/2278 is not listed on IDEAS
    2. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    3. Zachary Feinstein & Birgit Rudloff, 2012. "Time consistency of dynamic risk measures in markets with transaction costs," Papers 1201.1483, arXiv.org, revised Dec 2012.
    4. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    5. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    6. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    7. Rüschendorf Ludger, 2006. "Law invariant convex risk measures for portfolio vectors," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-12, July.
    8. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    9. repec:dau:papers:123456789/353 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Löhne & Birgit Rudloff & Firdevs Ulus, 2014. "Primal and dual approximation algorithms for convex vector optimization problems," Journal of Global Optimization, Springer, vol. 60(4), pages 713-736, December.
    2. repec:eee:stapro:v:131:y:2017:i:c:p:25-37 is not listed on IDEAS
    3. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2013. "Measuring risk with multiple eligible assets," Papers 1308.3331, arXiv.org, revised Mar 2014.
    4. Andreas Hamel & Andreas Löhne & Birgit Rudloff, 2014. "Benson type algorithms for linear vector optimization and applications," Journal of Global Optimization, Springer, vol. 59(4), pages 811-836, August.
    5. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.
    6. Emmanuel Lepinette & Ilya Molchanov, 2017. "Conditional cores and conditional convex hulls of random sets," Papers 1711.10303, arXiv.org.
    7. Zachary Feinstein & Birgit Rudloff, 2015. "A Supermartingale Relation for Multivariate Risk Measures," Papers 1510.05561, arXiv.org, revised Jan 2018.
    8. c{C}au{g}{i}n Ararat & Andreas H. Hamel & Birgit Rudloff, 2014. "Set-valued shortfall and divergence risk measures," Papers 1405.4905, arXiv.org, revised Sep 2017.
    9. Bazovkin, Pavel, 2014. "Geometrical framework for robust portfolio optimization," Discussion Papers in Econometrics and Statistics 01/14, University of Cologne, Institute of Econometrics and Statistics.
    10. Zachary Feinstein & Birgit Rudloff, 2017. "A recursive algorithm for multivariate risk measures and a set-valued Bellman’s principle," Journal of Global Optimization, Springer, vol. 68(1), pages 47-69, May.
    11. repec:wsi:ijtafx:v:20:y:2017:i:05:n:s0219024917500261 is not listed on IDEAS
    12. Zachary Feinstein & Birgit Rudloff, 2015. "A recursive algorithm for multivariate risk measures and a set-valued Bellman's principle," Papers 1508.02367, arXiv.org, revised Jul 2016.
    13. repec:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-017-2526-z is not listed on IDEAS
    14. Andreas Haier & Ilya Molchanov & Michael Schmutz, 2016. "Intragroup transfers, intragroup diversification and their risk assessment," Annals of Finance, Springer, vol. 12(3), pages 363-392, December.
    15. Emmanuel Lepinette & Ilya Molchanov, 2016. "Risk Arbitrage and Hedging to Acceptability," Papers 1605.07884, arXiv.org, revised Jun 2016.
    16. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    17. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1202.5702. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.