IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1212.5563.html
   My bibliography  Save this paper

Multiportfolio time consistency for set-valued convex and coherent risk measures

Author

Listed:
  • Zachary Feinstein
  • Birgit Rudloff

Abstract

Equivalent characterizations of multiportfolio time consistency are deduced for closed convex and coherent set-valued risk measures on $L^p(\Omega,\mathcal F, P; R^d)$ with image space in the power set of $L^p(\Omega,\mathcal F_t,P;R^d)$. In the convex case, multiportfolio time consistency is equivalent to a cocycle condition on the sum of minimal penalty functions. In the coherent case, multiportfolio time consistency is equivalent to a generalized version of stability of the dual variables. As examples, the set-valued entropic risk measure with constant risk aversion coefficient is shown to satisfy the cocycle condition for its minimal penalty functions, the set of superhedging portfolios in markets with proportional transaction costs is shown to have the stability property and in markets with convex transaction costs is shown to satisfy the composed cocycle condition, and a multiportfolio time consistent version of the set-valued average value at risk, the composed AV@R, is given and its dual representation deduced.

Suggested Citation

  • Zachary Feinstein & Birgit Rudloff, 2012. "Multiportfolio time consistency for set-valued convex and coherent risk measures," Papers 1212.5563, arXiv.org, revised Oct 2014.
  • Handle: RePEc:arx:papers:1212.5563
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1212.5563
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Andrzej Ruszczynski & Alexander Shapiro, 2004. "Conditional Risk Mappings," Risk and Insurance 0404002, EconWPA, revised 08 Oct 2005.
    3. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    4. Yuri Kabanov, 2009. "Markets with Transaction Costs. Mathematical Theory," Post-Print hal-00488168, HAL.
    5. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    6. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Conditional Risk Mappings," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 544-561, August.
    7. Jocelyne Bion-Nadal, 2008. "Dynamic risk measures: Time consistency and risk measures from BMO martingales," Finance and Stochastics, Springer, vol. 12(2), pages 219-244, April.
    8. Y.M. Kabanov, 1999. "Hedging and liquidation under transaction costs in currency markets," Finance and Stochastics, Springer, vol. 3(2), pages 237-248.
    9. Cheridito, Patrick & Stadje, Mitja, 2009. "Time-inconsistency of VaR and time-consistent alternatives," Finance Research Letters, Elsevier, vol. 6(1), pages 40-46, March.
    10. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. repec:dau:papers:123456789/13268 is not listed on IDEAS
    12. repec:wsi:ijtafx:v:14:y:2011:i:01:n:s0219024911006292 is not listed on IDEAS
    13. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    14. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    15. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1212.5563. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.