IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v28y2011i3p195-225n3.html
   My bibliography  Save this article

Law invariant risk measures on L∞ (ℝd)

Author

Listed:
  • Ekeland Ivar

    (Université Paris-Dauphine, CEREMADE and Institut de Finance, Paris CEDEX 16, Frankreich)

  • Schachermayer Walter

Abstract

Kusuoka (2001) has obtained explicit representation theorems for comonotone risk measures and, more generally, for law invariant risk measures. These theorems pertain, like most of the previous literature, to the case of scalar-valued risks.Jouini, Meddeb, and Touzi (2004) and Burgert and Rüschendorf (2006) extended the notion of risk measures to the vector-valued case. Recently Ekeland, Galichon, and Henry (2009) and Rüschendorf (2006, 2010) obtained extensions of the above theorems of Kusuoka to this setting. Their results were confined to the regular case.In general, Kusuoka´s representation theorem for comonotone risk measures also involves a singular part. In the present work we give a full generalization of Kusuoka´s theorems to the vector-valued case. The singular component turns out to have a richer structure than in the scalar case.

Suggested Citation

  • Ekeland Ivar & Schachermayer Walter, 2011. "Law invariant risk measures on L∞ (ℝd)," Statistics & Risk Modeling, De Gruyter, vol. 28(3), pages 195-225, September.
  • Handle: RePEc:bpj:strimo:v:28:y:2011:i:3:p:195-225:n:3
    DOI: 10.1524/stnd.2011.1099
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2011.1099
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2011.1099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puccetti, Giovanni & Scarsini, Marco, 2010. "Multivariate comonotonicity," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 291-304, January.
    2. Kiesel, Swen & Rüschendorf, Ludger, 2010. "On optimal allocation of risk vectors," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 167-175, October.
    3. Alfred Galichon & Ivar Ekeland & Marc Henry, 2009. "Comonotonic measures of multivariates risks," Working Papers hal-00401828, HAL.
    4. repec:hal:journl:hal-00538974 is not listed on IDEAS
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    7. repec:dau:papers:123456789/353 is not listed on IDEAS
    8. Dana, Rose-Anne & Scarsini, Marco, 2007. "Optimal risk sharing with background risk," Journal of Economic Theory, Elsevier, vol. 133(1), pages 152-176, March.
    9. repec:dau:papers:123456789/342 is not listed on IDEAS
    10. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    11. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/9738 is not listed on IDEAS
    2. Yanhong Chen & Yijun Hu, 2019. "Set-Valued Law Invariant Coherent And Convex Risk Measures," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-18, May.
    3. Shuo Gong & Yijun Hu & Linxiao Wei, 2022. "Risk measurement of joint risk of portfolios: a liquidity shortfall aspect," Papers 2212.04848, arXiv.org, revised May 2024.
    4. Alfred Galichon & Ivar Ekeland & Marc Henry, 2009. "Comonotonic measures of multivariates risks," Working Papers hal-00401828, HAL.
    5. Ludger Rüschendorf, 2012. "Worst case portfolio vectors and diversification effects," Finance and Stochastics, Springer, vol. 16(1), pages 155-175, January.
    6. Maria Arduca & Pablo Koch-Medina & Cosimo Munari, 2019. "Dual representations for systemic risk measures based on acceptance sets," Papers 1906.10933, arXiv.org, revised Oct 2019.
    7. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    8. Alfred Galichon, 2010. "The Var At Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 503-506.
    9. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    10. repec:dau:papers:123456789/2278 is not listed on IDEAS
    11. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    12. repec:spo:wpmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    13. repec:spo:wpecon:info:hdl:2441/5rkqqmvrn4tl22s9mc4b1h6b4 is not listed on IDEAS
    14. Jiménez Guerra, Pedro, 2006. "Generalized vector risk functions," DEE - Working Papers. Business Economics. WB wb066721, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    15. Alfred Galichon & Ivar Ekeland & Marc Henry, 2009. "Comonotonic measures of multivariates risks," Working Papers hal-00401828, HAL.
    16. Daniel Lacker, 2018. "Liquidity, Risk Measures, and Concentration of Measure," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 813-837, August.
    17. Cousin, Areski & Di Bernardino, Elena, 2014. "On multivariate extensions of Conditional-Tail-Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 272-282.
    18. Chen, Yanhong & Hu, Yijun, 2017. "Set-valued risk statistics with scenario analysis," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 25-37.
    19. Kiesel Swen & Rüschendorf Ludger, 2014. "Optimal risk allocation for convex risk functionals in general risk domains," Statistics & Risk Modeling, De Gruyter, vol. 31(3-4), pages 335-365, December.
    20. Daniel Lacker, 2015. "Liquidity, risk measures, and concentration of measure," Papers 1510.07033, arXiv.org, revised Oct 2015.
    21. Wei, Linxiao & Hu, Yijun, 2014. "Coherent and convex risk measures for portfolios with applications," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 114-120.
    22. Di Bernardino, E. & Fernández-Ponce, J.M. & Palacios-Rodríguez, F. & Rodríguez-Griñolo, M.R., 2015. "On multivariate extensions of the conditional Value-at-Risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 1-16.
    23. Beatrice Acciaio, 2007. "Optimal risk sharing with non-monotone monetary functionals," Finance and Stochastics, Springer, vol. 11(2), pages 267-289, April.
    24. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:28:y:2011:i:3:p:195-225:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.